
OGC® DOCUMENT: 23-050
External identifier of this OGC® document: http://www.opengis.net/doc/PER/T19-D021

OGC TESTBED-19
AGILE REFERENCE
ARCHITECTURE
ENGINEERING REPORT

ENGINEERING REPORT

PUBLISHED

Submission Date: 2023-12-06
Approval Date: 2024-01-25
Publication Date: 2024-04-26
Editor: Lucio Colaiacomo

Notice: This document is not an OGC Standard. This document is an OGC Public Engineering Report created as a deliverable in an OGC
Interoperability Initiative and is not an official position of the OGC membership. It is distributed for review and comment. It is subject to change
without notice and may not be referred to as an OGC Standard.
Further, any OGC Engineering Report should not be referenced as required or mandatory technology in procurements. However, the discussions
in this document could very well lead to the definition of an OGC Standard.

License Agreement

Use of this document is subject to the license agreement at https://www.ogc.org/license

Copyright notice

Copyright © 2024 Open Geospatial Consortium
To obtain additional rights of use, visit https://www.ogc.org/legal

Note

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The Open Geospatial
Consortium shall not be held responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property
rights of which they may be aware that might be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 23-050 ii

https://www.ogc.org/license
https://www.ogc.org/legal

CONTENTS

I. EXECUTIVE SUMMARY ...vii

II. KEYWORDS ...viii

III. CONTRIBUTORS .. viii

1. INTRODUCTION ...10
1.1. Problem statement .. 10
1.2. Possible path towards Next Generation Architecture ...11

2. TERMS, DEFINITIONS AND ABBREVIATED TERMS ..13
2.1. Terms and definitions ..13
2.2. Abbreviated terms ... 15

3. REFERENCE ARCHITECTURE ... 18
3.1. Actual status ... 18
3.2. Examples of architectures in use ... 18
3.3. Building blocks ..21
3.4. Architecture and Solution Building Blocks (TOGAF definition) ...22
3.5. Comparison based on the above elements ... 25

4. NEXT GENERATION ARCHITECTURE ... 27
4.1. Federated Agile Collaborating Trusted Systems (FACTS) ... 27
4.2. Requirements for next generation architecture ..29
4.3. Building block definition — further considerations .. 33
4.4. Interaction space ..35
4.5. Way ahead ...35
4.6. Artificial Intelligence ..42
4.7. Use cases ... 43

5. GENERATION AFTER NEXT ... 45
5.1. Open issues ...45
5.2. Future work ...45

ANNEX A (INFORMATIVE) COMPONENT DELIVERABLES ... 48
A.1. Component D121: An integrated knowledge base linking machine-readable specifications
required to implement the target DDIL Use Case ...48
A.2. Component D122: The Agile Reference Architecture represented in RDF/Turtle format51
A.3. Component D123: An instance of OGC API – Processes ... 56
A.4. Component D124: An instance of OGC API – Features serving OpenStreetMap data 64

OPEN GEOSPATIAL CONSORTIUM 23-050 iii

A.5. Component D125: An instance of OGC API — Features supporting real-time observations71
A.6. D127: An instance of OGC API – Tiles serving OS Open Zoomstack data82
A.7. Component D128: An instance of OGC API – Records .. 84

ANNEX B (INFORMATIVE) REVISION HISTORY ...100

BIBLIOGRAPHY .. 102

LIST OF TABLES

Table A.1 .. 50
Table A.2 — Resources — ARA Blocks ..85

LIST OF FIGURES

Figure 1 — actual working brainstorming architecture (logical workflow) ..19
Figure 2 — architecture deployment example .. 20
Figure 3 — architecture vision (The Open Group Architecture Framework)24
Figure 4 — possible reference architecture ... 30
Figure 6 — next generation architecture ..33
Figure 7 — w3c did sample architecture ..37
Figure 8 — hyperledger fabric sample architecture ...37
Figure 9 — kubernetes persistent volume sample architecture ..38
Figure 10 — ogc data formats transition ..39
Figure 11 — ogc api(s) transition schema ...40
Figure 12 — IPTcreation example ...41
Figure 13 — Provenance definition ... 42
Figure A.1 .. 52
Figure A.2 .. 53
Figure A.3 .. 53
Figure A.4 .. 54
Figure A.5 — Example of profiled RDF and associated SPARQL ..55
Figure A.6 .. 61
Figure A.7 .. 63
Figure A.8 .. 63
Figure A.9 .. 65
Figure A.10 — Global configuration (cfg.yml) ..66
Figure A.11 — Feature provider (store/entities/providers/tunisia.yml) ...66

OPEN GEOSPATIAL CONSORTIUM 23-050 iv

Figure A.12 — API building blocks (store/entities/services/tunisia.yml) ...66
Figure A.13 — Docker Compose file (docker-compose.yml) ..66
Figure A.14 — Initial PZD040 features representation ...67
Figure A.15 — Updated PZD040 features ...68
Figure A.16 — Schema of the PZD040 features .. 68
Figure A.17 — Components in the system (from interactive instruments) that provides
observation data via the PubSub extension for OGC API - Features ..72
Figure A.18 — Deployment of the components ...73
Figure A.19 — SQL DDL of the WIS 2.0 surface observation features .. 75
Figure A.20 — AsyncAPI definition ... 76
Figure A.21 — Air temperature observations at a Swedish weather station in MQTT Explorer
..79
Figure A.22 — Feature provider (store/entities/providers/wis20.yml) ..79
Figure A.23 — API building blocks (store/entities/services/wis20.yml) ..80
Figure A.24 — MapLibre web map of the OS Open Zoomstack vector tiles with the "Road" style.
Contains OS data © Crown copyright and database right 2023. ...84
Figure A.25 — ISO19139 coupled resource ..86
Figure A.26 — GeoDCAT-AP coupled resource ... 86
Figure A.27 — Docker container offering .. 86
Figure A.28 — OGC API-Processes offering (GeoJSON) .. 87
Figure A.29 — OGC API-Features offering (GeoDCAT-AP) ...88
Figure A.30 — GeoDCAT-AP Provenance Statement ... 88
Figure A.31 — ISO19139 Provenance Statement ..89
Figure A.32 — GeoDCAT-AP External Provenance Information ...89
Figure A.33 — Supported metadata formats ...90
Figure A.34 — Accessing the API-Records catalog with StacBrowser Client92
Figure A.35 — Accessing D124 metadata as Linked Data (GeoDCAT-AP)93
Figure A.36 — Reference to API description in RAINBOW (GeoJSON) ..93
Figure A.37 — Reference to API description in RAINBOW (JSON-LD) .. 94
Figure A.38 — Description OGC API - Features - Part 1 in RAINBOW ..94
Figure A.39 — Accessing Building Block metadata as Linked Data (RAINBOW) 95
Figure A.40 — Accessing API Records search responses as Linked Data (GeoDCAT-AP) 96
Figure A.41 — DID document with service information .. 96
Figure A.42 — DIF Universal Resolver ..98
Figure A.43 — Catalog record referring to resource DID identifier/document. 98

LIST OF RECOMMENDATIONS

REQUIREMENT 1 .. 30

OPEN GEOSPATIAL CONSORTIUM 23-050 v

REQUIREMENT 2 .. 30

REQUIREMENT 3 .. 30

REQUIREMENT 4 .. 31

REQUIREMENT 5 .. 31

REQUIREMENT 6 .. 31

REQUIREMENT 7 .. 32

REQUIREMENT 8 .. 32

REQUIREMENT 9 .. 32

REQUIREMENT 10 ..32

OPEN GEOSPATIAL CONSORTIUM 23-050 vi

I EXECUTIVE SUMMARY

The concepts of agile architecture and reference architecture may not be new ideas in
information or geospatial technologies, but what is meant by the term Agile Reference
Architecture?

Agile Reference Architecture is the long-term vision of the complex and changing nature of how
problems will be solved in the future within the location-referenced and geospatial realms. This
includes consideration of network availability, as containers integrated with Linked Data, and
Application Programming Interfaces (APIs) serve data as secure, trusted, and self-describing
resources.

While the Open Geospatial Consortium (OGC) focuses on geospatial information and
technologies, that community is also dependent on the overall state of information and
communications technology (ICT), including developing cyber, cryptographic, and internet
technologies.

In today’s infrastructures, the collection, exchange, and continuous processing of geospatial
resources typically happens at pre-defined network endpoints of a spatial data infrastructure.
Each participating operator hosts some capability at a network endpoint. Whereas some
network operator endpoints may provide data access, other endpoints provide processing
functionality and other endpoints may support the uploading of capabilities. In other words,
such an infrastructure is not agile in the sense that it cannot adapt by itself to meet the needs of
the moment. One of the biggest challenges resulting from the static characteristics is ensuring
effective and efficient operations of the overall system and at the same time maintaining trust
and provenance.

This OGC Testbed 19 Engineering Report (ER) outlines novel concepts for establishing a
federated agile infrastructure of collaborative trusted systems (FACTS) that is capable of acting
autonomously to ensure fit-for-purpose cooperation across the entire system. One of the key
objectives is to not create a new data product, but instead a collaborative object is offered
leveraging FACTS that allows for obtaining the data product via well-defined interfaces and
functions provided by the collaborative object.

Trust and assurance are two key aspects when operating a network of collaborative objects
leveraging STANAG 4774/4778. STANAG 4774 outlines the metadata syntax required for a
confidentiality label to better facilitate and protect sensitive information sharing. In addition,
STANAG 4778 defines how a confidentiality label is bound to the data throughout its lifecycle
and between the sharing parties.The agile aspect is achieved by the object’s ability to activate,
deactivate, and order well-defined capabilities from other objects. These capabilities are
encapsulated in building blocks. Each building block is well defined in terms of accessibility,
functionality, and ordering options. This allows building blocks to roam around collaborative
objects as needed to ensure a well-balanced network load and suitable processing power of
individual nodes from the network.

Equally trusted partners in the infrastructure participate in FACTS. They can collect data from
other partners and create derived products via collaborative objects. The sharing of data
products is only possible directly, meaning direct communication with data consumer and it
is only possible via the objects. This guarantees that fundamental trust operations are applied

OPEN GEOSPATIAL CONSORTIUM 23-050 vii

to the data and provenance records are produced before the data product is made available
to others. The use of Blockchain technology and Smart contracts is one example of how this
fundamental behavior can be planted into collaborative objects. As in trusted networks that
are using Evaluation Assurance Level (EAL) approved hardware and software components, the
objects will have to undergo a similar assurance process.

For ensuring the acceptance and interoperability of an agile reference architecture, built on
top of FACTS with collaborative objects and building blocks, standardization is a key aspect.
In particular, the core (fundamental) requirements for FACTS as well as the interfaces and
capabilities of the collaborative objects and pluggable building blocks should be standardized.
The OGC provides a consensus based collaborative standardization environment fits these
requirements very well.

I I KEYWORDS

The following are keywords to be used by search engines and document catalogues.

testbed, architecture, Agile Reference Architecture

I I I CONTRIBUTORS

All questions regarding this document should be directed either to the editor or to the
contributors.

NAME ORGANIZATION ROLE

Lucio Colaiacomo EU SatCen Editor

Greg Buehler OGC Contributor

David Habgood KurrawongAI Contributor

Christophe Noël Spacebel s.a. Contributor

Clemens Portele interactive instruments GmbH Contributor

Yves Coene Spacebel s.a. Contributor

OPEN GEOSPATIAL CONSORTIUM 23-050 viii

1

INTRODUCTION

OPEN GEOSPATIAL CONSORTIUM 23-050 9

1 INTRODUCTION

The term Agile Reference Architecture (ARA) refers to the long-term vision of the complex and
changing nature of how problems will be solved in the future within the location-referenced
and geospatial realms, with or without network availability, as containers mix with Linked Data,
and as APIs and data become more secure, trusted, and self-describing. In addition to relying on
OGC Standards for enabling geospatial interoperability, the geospatial community also depends
on the overall state of information and communications technology (ICT), including developing
cyber, crypto, and internet technologies. In the OGC Testbed 19 ARA task as documented in
this Engineering Report (ER), the reader is encouraged to begin a journey to define where the
industry is with the current reference architecture. This discussion includes where the industry is
headed in the near term as technology and ideas are developed (next generation), and ultimately,
to determine a suitable direction for the generation-after-next of the geospatial community. This
ER will not answer all these questions but is intended to provide a baseline, upon which future
initiatives will build. This is required in order to evolve into the next, more flexible reference
architecture, and ultimately into the agile reference architecture of the generation-after-next.

1.1. Problem statement

In recent years the trend in Information Technology Security — the methods, tools and personnel
used to defend an organization’s digital assets — developed normative references that require
revision of how digital information (including geospatial data) is produced, managed and served.
Trust of Data and Services is no longer an implementation issue but more and more an issue
for the implementation and adoption of geospatial standards. Moreover, the OGC Standards
development process has typically assumed a static networking model in the sense that each
operator publishes interface instances or APIs with a given set of functionality. The following
issues therefore need to be considered. Proxy caching is a feature of proxy servers that stores
content on the proxy server itself, allowing web services to share those resources to more users.
The proxy server coordinates with the source server to cache documents such as files, images
and web pages. So creating a data space out of the control of the serber (or API). Another
issue is how to discover new or updated capabilities provided by the APIs. OGC API Standards
support synchronous or asynchronous communication, but still require using HTTP/S and/or
MQTT protocols. Another issue is how to establish autonomous interactions between systems
assuring trust. OGC API Standards are concerned with managing data, providing access to data,
or processing data. For example, consider the current OGC API Standards baseline. A user can
access a sensor through implementations of current OGC API Standards. However, how does
the user determine the chain of commands for a given activity? How is Trust managed in OGC
Standards? How can the provenance of the information be accessed via implementations of
OGC Data Encoding Standards? Consider a GML instance document or a map stored in GeoTIFF
or GMLJP2. How can the user of that information validate the integrity of the information and
be assured about the authenticity of the original author? How is provenance documented?
Consider for example a GML document or a GeoTIFF file that was modified by a user in good
faith (e.g., updating feature properties to reflect updates). Once the information is saved to
storage there is no recording that the modification happened! More than loosely coupled

OPEN GEOSPATIAL CONSORTIUM 23-050 10

APIs are required to support the requirements as identified above. An ecosystem of trusted
collaborating systems, of which implementations of the OGC API and Web Service Standards
can be a part of, needs to be defined. In the D123-128 parts of this docment you will see
examples of what is possible to manage with current standards and definitions but in an
environment that is neither trusted nor secure.

1.2. Possible path towards Next Generation Architecture

The objective is that any interaction on data inevitably produces a verifiable trace (provenance
+ identity) and that data itself is secured (principles of data centric security applied). The idea
is to introduce Collaborative Objects (CO) that are capable of negotiating relevant business
(in particular not data) between each other based on Smart Contracts. For example, Smart
Contracts integrated into a Blockchain can assert fundamental communications to produce
metadata and provenance. This enables working together in agilely in a self-sovereign /
adaptable way. All interactions are controlled via Smart Contracts. F.A.C.T.S. (Federated Adaptive
(Infrastructure of) Collaborating Trusted Systems) as the ecosystem establishes trust and
provenance based on Collaborative Objects (COs). These COs could be implemented, as an
example, via Docker Images using Content Trust. This ensures that there is basic trust in COs,
which is required to realize the adaptive Trusted System. Many current implementations of OGC
API Standards are not adaptive – they cannot self-adapt because there is no “built-in” logic other
than providing access to data, metadata, and processes! They are simply not designed to do so.
However, OGC API Standards are important for realizing the vision of data access in F.A.C.T.S. In
the context of defining the next generation architecture, it is clear that there is a need to define
a whole ecosystem for increased flexibility. Such a new Agile Reference Architecture can also
adapt to an increased number of data/processes that are also derived by algorithms creating
new COs in near real time services. The main steps for the next activities are Data Centric
Security (IPT based), OGC building block definition with IT Security constraints considered (IPT
enabled), OGC Standards harmonization to consider IPT.

OPEN GEOSPATIAL CONSORTIUM 23-050 11

2

TERMS, DEFINITIONS AND
ABBREVIATED TERMS

OPEN GEOSPATIAL CONSORTIUM 23-050 12

2 TERMS, DEFINITIONS AND ABBREVIATED
TERMS

This document uses the terms defined in OGC Policy Directive 49, which is based on the
ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards. In
particular, the word “shall” (not “must”) is the verb form used to indicate a requirement to be
strictly followed to conform to this document and OGC documents do not use the equivalent
phrases in the ISO/IEC Directives, Part 2.

This document also uses terms defined in the OGC Standard for Modular specifications
(OGC 08-131r3), also known as the ‘ModSpec’. The definitions of terms such as standard,
specification, requirement, and conformance test are provided in the ModSpec.

For the purposes of this document, the following additional terms and definitions apply.

This document uses the terms defined in OGC Policy Directive 49, which is based on the
ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards. In
particular, the word “shall” (not “must”) is the verb form used to indicate a requirement to be
strictly followed to conform to this document and OGC documents do not use the equivalent
phrases in the ISO/IEC Directives, Part 2. This document also uses terms defined in the OGC
Standard for Modular specifications (OGC 08-131r3), also known as the ‘ModSpec’. The
definitions of terms such as standard, specification, requirement, and conformance test are
provided in the ModSpec. For the purposes of this document, the following additional terms and
definitions apply.

2.1. Terms and definitions

2.1.1. Building Block

A building block is a package of functionality defined to meet specific business needs. The way
in which functionality, products, and custom developments are assembled into building blocks
will vary widely between individual architectures

OPEN GEOSPATIAL CONSORTIUM 23-050 13

https://portal.ogc.org/public_ogc/directives/directives.php
https://portal.opengeospatial.org/files/?artifact_id=34762

2.1.2. Collaborative Object

A Collaborative Object is self-contained and contains data products, services/processes, and
collaborates in the exchange of events, as well as the invocation of operations.

2.1.3. Data-centric Security

Data-centric security is an approach to security that emphasizes the dependability of the data
itself rather than the security of networks, servers, or applications [Wikipedia].

2.1.4. F.A.C.T.S.

FACTS (Federated infrastructure of Agile Collaborative Trusted Systems) establishes trust based
on Collaborative Objects (COs) such as a collection of Docker Images using Content Trust.

2.1.5. Smart Certificate

A Smart Certificate ensures that the F.A.C.T.S. Collaborative Object is doing what it is supposed
to do, supporting verified attestation and processes. A Smart Certificate assures, for example,
that the APIs on the Collaborative Object interact with F.A.C.T.S. Similar to the Smart Contract,
where the recording of the processing is published on the Blockchain BEFORE the data product
is published, a Smart Certificate ensures that the Verifiable Attestation is issued before the data
product is published.

2.1.6. Smart Contract

A Smart Contract is a computer program or a transaction protocol that is intended to
automatically execute, control, or document events and actions according to the terms of a
contract or an agreement. [Wikipedia]. A F.A.C.T.S. Smart Contract for example ensures that the
recording of the processing metadata (provenance information) is published on the Blockchain
BEFORE the service (Building Block) is published.

OPEN GEOSPATIAL CONSORTIUM 23-050 14

2.1.7. Verifiable Attestation

A type of verifiable credential containing claims about certain attributes of an entity for uses
other than identification or authentication (EBSI definition). https://code.europa.eu/ebsi/json-
schema/-/tree/main/schemas/ebsi-attestation

2.2. Abbreviated terms

ABB Architecture Building Block

API Application Programming Interface

ARA Agile Reference Architecture

BB Building Block

CO Collaborative Object

CQL Common Query Language

DCS Data Centric Security

DDIL Denied Disrupted Intermittent Limited

DGIWG Defense Geospatial Information Working Group

DID Decentralized Identifier

DIF Decentralized Identity Foundation

DMF DGIWG Metadata Foundation

FACTS Federated Agile Collaborating Trusted Systems

GDAL Geospatial Data Abstraction Library

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IPT Identity Provenance Trust

ISO International Organization for Standardization

JSON JavaScript Object Notation

OPEN GEOSPATIAL CONSORTIUM 23-050 15

https://code.europa.eu/ebsi/json-schema/-/tree/main/schemas/ebsi-attestation
https://code.europa.eu/ebsi/json-schema/-/tree/main/schemas/ebsi-attestation

MGCP Multinational Geospatial Co-production Program

NGA US National Geospatial Intelligence Agency

NSG US National System for Geospatial Intelligence

OGC Open Geospatial Consortium

OS Ordnance Survey (Great Britain)

RDF Resource Description Framework

REST Representational State Transfer

RM-ODP Reference Model of Open Distributed Processing

SatCen European Union Satellite Center

SBB Solution Building Block

SC Smart Certificate

SHACL Shapes Constraint Language

SSI Self-Sovereign Identity

SWG Standard Working Group

TIE Technology Integration Experiment

TOGAF The Open Group Architecture Framework

TP Trust and Provenance

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

VA Verifiable Attestation

XML eXtensible Markup Language

OPEN GEOSPATIAL CONSORTIUM 23-050 16

3

REFERENCE ARCHITECTURE

OPEN GEOSPATIAL CONSORTIUM 23-050 17

3 REFERENCE ARCHITECTURE

3.1. Actual status

Currently the OGC Reference Model (ORM) architecture is used as the basis for OGC Standards
work (OGC 08-062r7). The ORM is defined using Reference Model for Open Distributed
Processing (RM-ODP) which is an international standard for architecting open, distributed
processing systems. Recent advances in various technologies are causing a self-reflection on
the way geospatial systems architecture can be adapted for the next generation of geospatial
systems and for the generation-after-next. Below in Clause 3.2, is a short but not exhaustive
list of the reference architectures that are in use and can be considered within the scope of this
Engineering Report.

3.2. Examples of architectures in use

The OGC RM has the following purposes (OGC 03-040):

• provides a foundation for coordination and understanding (both internal and external to
OGC) of ongoing OGC activities and the OGC Technical Baseline;

• update/Replacement of parts of the 1998 OpenGIS Guide (https://www.ogc.org/
standards/orm/);

• describes the OGC requirements baseline for geospatial interoperability;

• describes the OGC architecture framework through a series of non-overlapping
viewpoints: including existing and future elements; and

• regularizes the development of domain-specific interoperability architectures by providing
examples.

DGIWG Geospatial Reference Architecture (DGRA)

The DGRA defines a set of standards, implementation guides, and industry practices which
together form an ideal framework for achieving geospatial interoperability in a Defense
context (DGIWG 933). The DGRA is particularly relevant to this engineering report because
of its application in the Defense community and its use of ISO/IEC 10746 1-3 “Information
Technology — Open Distributed Processing — Reference Model” (RM-ODP).

Open Distributed Processing — Reference Model (RM-ODP)

OPEN GEOSPATIAL CONSORTIUM 23-050 18

https://www.ogc.org/standards/orm/);
https://www.ogc.org/standards/orm/);

The RM-ODP defines a model that portrays a reference architecture from the following
viewpoints.

• Enterprise: Defines the purpose, scope and policies of the system.

• Information: Describes the semantics of information used within the system, e.g., Vector,
Imagery, Metadata, Portrayal, and their relevant standards.

• Computational: Describes the systems individual interfaces, e.g., the standards and the
operations they use for each function.

• Engineering: Describes the system components, their relationship functions and standards.

• Technology: Describes the technology choices available to realize systems in terms of their
compliance to specifications described in other viewpoints.

Geospatial Interoperability reference architecture

Figure 1 — actual working brainstorming architecture (logical workflow)

OGC is in the process of addressing the need for a modernized reference architecture through
its work on OGC API Standards. The definition of the concept of OGC API ‘Building block’, is
still not standardized. To be more precise it is defined in the OGC Technical Commettee Policies
and Procedures 7.2.1 where it is stated “There is no firm definition for the content or scope
of a building block, but the building block must fulfill a function that can operate in the larger
context of an implementation,…”. As properly referred in that document the implementation
part that is connected with security of data and services by normative reference (last but
not least EU Digital Act) impose a redefinition of the architecture. The main disadvantage is

OPEN GEOSPATIAL CONSORTIUM 23-050 19

that – as with the existing OGC Web Services Standards – security is not directly integrated
into the API. As such, security needs to be added as part of the implementation or managed
externally. Actual implementations of OGC API Standards are based on OGC building blocks
(some of which are not yet standards) and there is no security capability yet for this concept.
Where a component is specific to a given OGC API Standard, this is not an issue. However, this
can result in definitions that are not unique. Because the building blocks currently do not use
agreed cross API semantics, definitions, and concepts, the interfaces defined and in use are
likely be developed on an ad hoc basis, resulting in stove-piped solutions that may not be fully
interoperable.

Figure 2 — architecture deployment example

Current architectures — and in particular for geospatial systems — exhibit a strong dependency
on data types (meaning metadata describing different encodings) that could be reduced as
much as possible to enable real interoperable processes and services. The managing of new
data formats and their standardization requires effort that some organizations cannot afford.
Today the situation is that from the moment a new data format is available (produced from the
market or developed) up to the moment it is standardized (OGC, ISO…) the delay is considerable
and does not allow an agile approach. Even though this development is asynchronous to
software development and an OGC API implementation instance may use the encoding once
standardized, there is the risk of not being interoperable.

The drawback of this approach is that the creation of connected services (consider the draft
OGC API — Connected Systems (https://ogcapi.ogc.org/connectedsystems/)) or persistent
monitoring capability is not straight forward. The building blocks approach enables modularity
but requires basic elements such as Data Centric Security (DCS) in their development and life
cycle. Therefore, DCS should be considered as an element for actual architectures wherever
applicable and mainly for the next and generation after next. Many OGC encodings and API
Standards do not specify security constraints. Perhaps it is impossible because there are
too many use cases to be considered? This implies difficulty in establishing data trust and
provenance to data/services/processes of a single operator and implies ‘mission impossible’
when trying to build workflows with secured services as in a federated setup.

Service Orchestration and Automation Platforms (SOAP)

Considering Service Orchestration and Automation Platforms (SOAP), Gartner says: “…SOAPs
enable I&O leaders to design and implement business services. These platforms combine
workflow orchestration, workload automation and resource provisioning across an organization’s
hybrid digital infrastructure. Increasingly, they are central to an organization’s ability to deploy
workloads and to optimize deployments as a part of cost and availability initiatives. SOAPs

OPEN GEOSPATIAL CONSORTIUM 23-050 20

https://ogcapi.ogc.org/connectedsystems/

provide a unified administration console and an orchestration engine to manage workloads
and data pipelines and to enable event-driven application workflows. Most tools expose APIs
enabling scheduling batch processes, monitoring task statuses and alerting users when new
events are triggered that can be integrated into DevOps pipelines to increase delivery velocity.
SOAPs expand the role of traditional workload automation by adapting to use cases that deliver
and extend into data pipelines, cloud-native infrastructure and application architectures. These
tools complement and integrate with DevOps toolchains to provide customer-focused agility
and cost savings, operational efficiency and process standardization.” (source: https://www.
gartner.com/reviews/vendor/storidge).

The Open Group Architecture framework (TOGAF)

A very detailed Architecture document is “The Open Group Architecture Framework” (TOGAF).
The proposal is to have the following definition for a Building Block, which was defined by the
Testbed-19 participants. There are two main aspects to consider, Architecture building block
(see definition below) and solution building block (see below) that could better fit the actual
OGC API concept and leave room for IPT adaptation.

3.3. Building blocks

3.3.1. Official OGC definition of a Building Block

Clause 7.2.1 of the OGC Technical Committee’s Policies and Procedures (OGC 05-020r29)
defines a Standard Building Block as follows:

“Many OGC Standards are structured with modular sets of requirements (or requirement classes)
that collectively function as a reusable building block. There is no firm definition for the content or
scope of a building block, but the building block must fulfill a function that can operate in the larger
context of an implementation, including combination with other OGC building blocks to create novel
implementations.

Building blocks developed for one Standard can be reused in another Standard. To facilitate such
reuse, a Standard constructed of building blocks shall identify each building block and publish a
definition of the building block to OGC’s Registries and web resources. The definition will be in the
form most suitable for the type of building block (e.g., Open API for a Standardized API), reference the
owning Standard, and be adequately documented to be used in reference.

OGC Standards that reuse building blocks from other Standards must include in the Normative
References a reference to the owning Standard of the building block(s) and a direct reference to
the registered building block(s) content. In this fashion, implementers of the Standard reusing these
building blocks need to only access specific parts (the building blocks) of the referenced Standard, not
the entire document.”

OPEN GEOSPATIAL CONSORTIUM 23-050 21

https://www.gartner.com/reviews/vendor/storidge
https://www.gartner.com/reviews/vendor/storidge

3.3.2. Generic characteristics of a building block

This engineering report therefore identifies the generic characteristics of a building block as
follows:

• a package of functionality defined to meet the business needs across an organization;

• has published interfaces to access the functionality;

• may interoperate with other, inter-dependent building blocks;

• considers implementation and usage, and evolves to exploit technology and standards;

• may be assembled from other building blocks;

• may be a subassembly of other building blocks;

• ideally is re-usable, replaceable, and well-specified; and

• may have multiple implementations but with different inter-dependent building blocks.

A building block is therefore simply a package of functionality defined to meet specific business
needs. The way in which functionality, products, and custom developments are assembled into
building blocks will vary widely between individual architectures. Every organization must decide
for itself what arrangement of building blocks works best for their use cases. A good choice
of building blocks can lead to improvements in legacy system integration, interoperability, and
flexibility in the creation of new systems and applications. Systems are built from collections of
building blocks, so most building blocks must interoperate with other building blocks. Wherever
that is true, it is important that the interfaces to a building block are published and reasonably
stable and persistent. Building blocks can be defined at various levels of detail, depending on
what stage of architecture development has been reached. For instance, at an early stage, a
building block can simply consist of a grouping of functionality such as a customer database and
some retrieval tools. Building blocks at this functional level of definition are described in TOGAF
as Architecture Building Blocks (ABBs). Later, real products or specific custom developments
replace these simple definitions of functionality, and the building blocks are then described as
Solution Building Blocks (SBBs).

3.4. Architecture and Solution Building Blocks (TOGAF
definition)

The following content has been copied from the TOGAF specification [20] and represents a
possible definition of what a building block could be at the architecture level and at solution
level. This definition could help in maintaining the actual implementations and opening the door
to the introduction of the IPT concept.

OPEN GEOSPATIAL CONSORTIUM 23-050 22

3.4.1. Architecture Building Blocks

Architecture Building Blocks (ABBs) relate to the Architecture Continuum (https://pubs.
opengroup.org/architecture/togaf8-doc/arch/chap18.html#tag_19_01), and are defined or
selected as a result of the application of the Architecture Development Method (ADM). The
ADM is a generic method for architecture development, which has been designed to deal with
most system and organizational requirements.

Characteristics

The following are characteristics of Architecture Building Blocks:

• define what functionality will be implemented;

• capture business and technical requirements;

• are technology aware; and

• direct and guide the development of SBBs.

Specification Content

ABB specifications include the following as a minimum:

• fundamental functionality and attributes: semantic, unambiguous, including security
capability and manageability;

• interfaces: selected, supplied (APIs, data formats, protocols, hardware interfaces,
standards);

• dependent building blocks with required functionality and named user interfaces; and

• mapped to business/organizational entities and policies.

3.4.2. Solution Building Blocks

Solution Building Blocks (SBBs) relate to the Solutions Continuum (https://pubs.opengroup.
org/architecture/togaf8-doc/arch/chap18.html#tag_19_02), and may be either procured or
developed.

OPEN GEOSPATIAL CONSORTIUM 23-050 23

https://pubs.opengroup.org/architecture/togaf8-doc/arch/chap18.html#tag_19_01
https://pubs.opengroup.org/architecture/togaf8-doc/arch/chap18.html#tag_19_01
https://pubs.opengroup.org/architecture/togaf8-doc/arch/chap18.html#tag_19_02
https://pubs.opengroup.org/architecture/togaf8-doc/arch/chap18.html#tag_19_02

Figure 3 — architecture vision (The Open Group Architecture Framework)

Characteristics

The following are characteristics of Solution Building Blocks:

• define what products and components will implement the functionality;

• define the implementation of the building block;

• fulfill business requirements; and

• are product or vendor-aware.

Specification Content (example not to be considered all applicable for OGC context)

SBB specifications include the following, as a minimum:

• specific functionality and attributes;

• interfaces: the implemented set;

• required SBBs used with required functionality and names of the interfaces used;

OPEN GEOSPATIAL CONSORTIUM 23-050 24

• mapping from the SBBs to the IT topology and operational policies;

• specifications of attributes shared across the environment (not to be confused with
functionality) such as security, manageability, localizability, and scalability;

• performance and configurability;

• design drivers and constraints, including the physical architecture; and

• relationships between SBBs and ABBs.

3.5. Comparison based on the above elements

Having analyzed the status of the various architectures available, the following can be assumed.

1. The current situation based on a mix of commercial and open source solutions
(partially implementing OGC and other standards) do not allow easy chaining of
services and processes. With complex systems it is even more difficult, if using
dynamic solutions, to enable certain flexibility if adapting systems dynamically is
required.

2. When ensuring security aspects such as identity+integrity, provenance and trust
(Data Centric Security) should be considered as one of the pillars to build future
architectures. Currently — as demonstrated in previous OGC Testbeds — there is
compatibility but not real implementation.

3. Derived from the previous points regarding trust on the data, it can be said that
trust=identity+integrity+provenance. As such an IPT-enabled system can be
based on identity and provenance.

4. The use of data to train models as used in some Artificial Intelligence workflows
is not currently defined in OGC Standards and should follow IPT criteria (unless
provenance in OGC Training ML). One recent exception is OGC TrainingDML-
AI Standard that specifies the requirement for detailed metadata for formalizing
the information model of training data. This includes, but is not limited to, the
following aspects: how the training data is prepared, such as provenance or
quality, etc.

So there is a need to start defining a standardization for building blocks and possible
implementations of OGC API Standards that support an IPT based Data Centric Security
approach.

OPEN GEOSPATIAL CONSORTIUM 23-050 25

4

NEXT GENERATION
ARCHITECTURE

OPEN GEOSPATIAL CONSORTIUM 23-050 26

4 NEXT GENERATION ARCHITECTURE

The Reference Architecture chapter outlined the limitations of the current architecture.
Basically, the need to chain data and services is limited by the data encoding dependency while
service interfaces are strongly related to the data type (features, maps, etc.). Basically, it is not
feature type agnostic. Moreover, data and services, if chained, must be trusted and identifiable.
Otherwise, the results cannot be trusted and so any results have limited trustworthiness.

The significance of not having identifiable provenance for data and services is that it does
not allow for agile connection between services and processes. This is because identification,
trustiness, and provenance are fundamental elements for enabling trustworthy chaining of
services. Identity and trustiness of data and services are also a key factor for developing
and deploying Machine Learning models and algorithms that are not only accurate, but also
explainable, FAIR, privacy-preserving, causal, robust, and trustworthy. To establish a viable
definition of the next generation architecture, the following points should at least be considered:

• the architecture should provide a level of abstraction to manage the complexity of the
system providing also communication and orchestration among building blocks;

• the architecture should provide a solution that considers performance and security
criteria;

• there is a need for definition of building blocks and their interfaces;

• building Block definition and specification, if agreed, should be an OGC standard;

• there is a need to consider Smart Certificate definition adoption by OGC; and

• there is a need to consider Smart Contract definition adoption by OGC.

The following is derived from prototyping-focused projects conducted by EU SatCen and are
provided here only as a reference.

4.1. Federated Agile Collaborating Trusted Systems
(FACTS)

In today’s infrastructures, the collection, exchange, and continuous processing of geospatial data
takes place at pre-defined network endpoints of a spatial data infrastructure. Each participating
operator hosts predefined static functionality at a network endpoint: Some operator network
endpoints may provide data access, other endpoints provide processing functionality, and
other endpoints uploading capabilities. In other words, such an infrastructure is not agile in the
sense that it cannot adapt by itself to meet more real time needs. One of the biggest challenges

OPEN GEOSPATIAL CONSORTIUM 23-050 27

resulting from these static characteristics is ensuring effective and efficient operations of the
overall system and at the same time maintaining trust and provenance.

This chapter outlines novel concepts for establishing federated agile infrastructure of
collaborative trusted systems (FACTS) that is capable of acting autonomously for ensuring fit-
for-purpose cooperation across the entire system. One of the key objectives is, for example,
that a data product is not made available, but instead a collaborative object is offered leveraging
FACTS that supports retrieval of the data product via well-defined interfaces and functions
provided by the collaborative object.

Trust and assurance are two key aspects when operating a network of collaborating objects
leveraging STANAG 4774/4778.

The agile aspect is achieved by the object’s ability to activate, deactivate, and order well-defined
capabilities from other objects. These capabilities are encapsulated in building blocks. Each
building block is well-defined in terms of accessibility, functionality, and ordering options. This
allows building blocks to roam around collaborative objects as needed to ensure a well-balanced
network load and processing power of individual nodes from the network.

Equally trusted partners in the infrastructure participate in FACTS. They are capable of collecting
data from other partners and creating derived products via collaborating objects. The sharing
of data products is not directly possible. It is only possible via the objects. This guarantees
that fundamental trust operations applied to the data and provenance records are produced
before the data product is made available to others. The use of the Blockchain technology
and Smart contracts is one example of how this fundamental behavior can be planted into
collaborative objects. As in trusted networks that are using EAL approved hardware and
software components, the objects will have to undergo a similar assurance process.

Building blocks define capabilities that can be activated, de-activated, or ordered from other
objects in the FACTS network. Even though the actual capabilities of a building block are subject
to configuration (based on need), there are fundamental APIs that a building block must support.
Considering that collaborative objects get distributed and executed via Kubernetes (https://
kubernetes.io/) or Helm (https://helm.sh/), for example, there is a key requirement of trust.
One approach to manage the fundamental trust in FACTS can be achieved via The Update
Framework (TUF) (https://theupdateframework.io/), which is called content trust in the Docker
environment.

Enhancing FACTS as an existing network of collaborative objects with additional capabilities
such as knowledge generation from Artificial Intelligence and Ontologies, the provenance for
and trust of training data must be considered. Without applying trust and provenance to AI
training data, the best algorithm is useless,, or even dangerous if trained with fraudulent data.

With FACTS, each participating entity can make available data or processing capabilities as it
meets their quality and security requirements. The ability to use data and processing capabilities
throughout FACTS strengthen the common capabilities because trustworthy can be chained on
the fly. Additional capabilities, available via a Licensing Building Block, may support expressing
re-use conditions.

Data products may become available to many participating entities. What is shared and under
which re-use conditions are at the discretion of the creating entity. Anything that is shared
must have re-use conditions to ensure proper and legitimate uptake. For example, leveraging
the Creative Commons licensing framework allows an entity to waive all rights but also allows

OPEN GEOSPATIAL CONSORTIUM 23-050 28

https://kubernetes.io/
https://kubernetes.io/
https://helm.sh/
https://theupdateframework.io/

expressing concrete re-use conditions ranging from simple attribution, non-commercial, or
preventing deriving own work conditions.

The use of FACTS can be compared with middleware that ensures integrity, provenance, and
trust of geospatial data products as created and distributed by any organization. For example,
data products encoded as GMLJP2, GeoPDF, geodb, and GeoTiff would be made available via
collaborative objects and thereby benefit from collaboration in the entire network. By using
FACTS, other EU member states could create derived work from the products generated. The
fundamental trust capabilities of the collaborative objects ensure that any modification to
a generated product can be detected and that the provenance capability enables tracing of
the lineage of derived products towards the original source. For ensuring the acceptance and
interoperability of an agile reference architecture, built on top of FACTS with collaborative
objects and building blocks, standardization is a key aspect. In particular, the core (fundamental)
requirements for FACTS as well as the interfaces and capabilities of the collaborative objects
and pluggable building blocks should be standardized.

Projects running in Europe like the European Blockchain Services Infrastructure (EBSI) (https://
ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home), Data Act (https://www.europarl.
europa.eu/doceo/document/TA-9-2023-0069_EN.pdf), create the baseline to start revising the
Architecture of Geospatial (and other) systems based at least on Security and, if possible, making
the architecture more flexible. OGC provides a consensus based collaborative standardization
environment that fits very well in this vision and could propose such concepts to try to find a
way forward towards a proper discussion across the geospatial community.

4.2. Requirements for next generation architecture

This section presents a possible system architecture that can answer the above use case and
reflects the requirements for a next generation architecture. The architecture should support
possible interaction between APIs (services) and data independently of pre-existing systems.

OPEN GEOSPATIAL CONSORTIUM 23-050 29

https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home
https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home
https://www.europarl.europa.eu/doceo/document/TA-9-2023-0069_EN.pdf
https://www.europarl.europa.eu/doceo/document/TA-9-2023-0069_EN.pdf

Figure 4 — possible reference architecture

REQUIREMENT 1

STATEMENT
The new architecture should be, as much as possible, independent of data encodings. The encoding
could just offer a file that uses Key Value Pairs (KVP) to present metadata that describes all the
relevant information in a way that is similar to the DGIWG Metadata Foundation (DMF).

REQUIREMENT 2

STATEMENT
Building blocks should be as service-agnostic as possible (without specialization according to data
types such as maps, features, and coverages)

REQUIREMENT 3

STATEMENT

All source of information should at least be defined in terms of trust and provenance to support the
proper assessment of validity through a digital signature as shown below:

1. signature

2. signature value e.g,

<gmljp2:extension>
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>

OPEN GEOSPATIAL CONSORTIUM 23-050 30

REQUIREMENT 3
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-
xml-c14n-20010315"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/
xmldsig#rsa-sha1"/>
 <ds:Reference URI="">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2000/09/
xmldsig#enveloped-signature"/>
 <ds:Transform Algorithm="http://www.w3.org/TR/1999/REC-xpath-
19991116">
 <ds:XPath xmlns:ds="http://www.w3.org/2000/09/xmldsig#" xmlns:
err="http://www.w3.org/2005/xqt-errors" xmlns:fn="http://www.w3.org/2005/
xpath-functions" xmlns:gml="http://www.opengis.net/gml/3.2" xmlns:gmlcov=
"http://www.opengis.net/gmlcov/1.0" xmlns:gmljp2="http://www.opengis.net/
gmljp2/2.0" xmlns:math="http://www.w3.org/2005/xpath-functions/math" xmlns:
swe="http://www.opengis.net/swe/2.0" xmlns:xs="http://www.w3.org/2001/
XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">/gmljp2:
GMLJP2CoverageCollection/gmlcov:metadata[1]/gmlcov:Extension[1]/gmljp2:
eopMetadata[1]</ds:XPath>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/
xmldsig#sha1"/>
 <ds:DigestValue>PozvauWPsaua10zZ0cfnw4cTJu4=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>
 SQhuJ0FQzHPh4I0VTgUdtvdNc9TREL7q2WyZb5FLby0XNPFZ6h9r/
ZiukgUyrryGpLBqyOvGprE pv4+cvrurbZcUik7Z4BoN2hxNs9T35P92sMjf9BGiCy5dgxSho9sI
L29Hf0u9b6rfoQAj03NC7FJ/rR1EGAN6T5AMK4bBT/iG/fNWfZKC9DimNwCLvezj3sryodrrl+D0
RfOrU7mL7d7IMsV75g5uklz/kilosBaQbkek6R+UINP8bY+yv1SD+Imyii+xO17TU9FPRh9puEwL
raauDm7RePPwZ4n5kdu2l5yg+/b1kRZAMbZIHWBbYslbMoEz21keRVjXeHjA==
 </ds:SignatureValue>
 </ds:Signature>
 </gmljp2:extension

REQUIREMENT 4

STATEMENT

All building blocks should support at least the same approach of the simple management of trust
and provenance. Building blocks should implement a meta description enabling automatic activation
on specific data sources (See OGC 20-089r1, OGC Best Practice for Earth Observation Application
Package, for an example).

REQUIREMENT 5

STATEMENT Data should be discoverable and queryable depending on the IPT and releasibility/accessibility.

REQUIREMENT 6

STATEMENT
A schemaless Data Model would be needed. An example would be the Open Street Map (OSM)
dataset mapped to a new data dictionary with an Excel spreadsheet and then schema recovered
automatically. Note that SAFE FME (Http://www.safe.com) and Hootenanny are examples of data

OPEN GEOSPATIAL CONSORTIUM 23-050 31

REQUIREMENT 6

conflation tools that can facilitate automated and semi-automated conflation of critical Foundation
GEOINT features in the topographic domain. In short, it merges multiple maps into a single seamless
map.

REQUIREMENT 7

STATEMENT

Context AI tools and other processes following extraction guidelines used in the implementation
of the processes themselves. These guidelines provide valuable information. As an example, the
definition of a beach: on a shore, the area on which the waves break and over which shore debris (for
example: sand, shingle, and/or pebbles) accumulate. These definitions could enable the use of RDF/
Turtle.

REQUIREMENT 8

STATEMENT

Trust and provenance validation could be implemented following a decentralized approach with
criteria starting from a majority vote of the various nodes up to 100% requirement. But this can work
also in the configuration of networks in Denied, Degraded, Intermittent, or Limited Bandwidth (DDIL)
environments ensuring local IPT, and further checking once connected to a node of the system.

REQUIREMENT 9

STATEMENT

Building blocks should enable streaming of information. Signaling of information available in a stream
to other building blocks should be active. This could happen in an asynchronous or synchronous
way and/or in accumulation mode. In this context a building block could be considered as “Data as a
Service”, for example.

REQUIREMENT 10

STATEMENT Data should be discoverable and queryable depending on the IPT and releasability/accessibility.

Considering the above requirements it could be assumed that Identity (+ integrity) Provenance
and Trust (IPT) layering is a required action to the next ARA, because the Architecture should at
least manage IPT tuple. The IPT management is not affecting the open nature (if any) of the data
and service but establish a minimal liability for the usage and further processing, e.g., usage of
machine learning algorithm with information with no provenance and not trusted source.

The above requirements leads to the following issues.

1. Managing of different data types and services in distributed environments

OPEN GEOSPATIAL CONSORTIUM 23-050 32

2. File systems limitations with new virtualized environment (e.g., docker container,
etc..)

3. Data files and streaming

4. Cloud/edge/local configuration.

Figure 6 — next generation architecture

4.3. Building block definition — further considerations

In the TOGAF specification, “a Building Block is a package of functionality defined to meet
business needs across an organization”. There is a type corresponding to a TOGAF metamodel.
In this context, a building block (BB) is a “thing” (e.g., company, server, etc.) with well-defined
interfaces, boundaries, and specifications to enable reusability. Moreover, BBs can be classified
into Architectural and Solution BBs (technology/vendor aware). The first drives the development
of the second. One or more building blocks can be integrated into existing/novel web
applications. Each building block represents a testable interface component.

The BB definition should support interaction between data and services and provide at least
the following parameters (dimensions, locations, domain, range values, and types (null and
interpolation, etc.)) after checking the availability of information related to the BB via functions.

OPEN GEOSPATIAL CONSORTIUM 23-050 33

The Data container should be provided with a “description” enabling BBs to interact via a set
of functions and determine possible workflows. This could also be achieved with algorithms
that could be integrating part of the orchestrator (i.e., orchestration is the coordination and
management of multiple computer systems, applications, and/or services, stringing together
multiple tasks in order to execute a larger workflow or process (http://databrticks.com)).

Considering experience acquired in the implementation of the OGC Web Processing Service
(WPS) and Web Coverage Processing Service (WCPS) Standards, the following can be stated.

1. WPS supports any kind of geoprocessing, whereas WCPS focuses on coverage
processing.

2. WPS consists only of a low-level framework for procedural invocation, whereas
WCPS gives a high-level, concrete, and concise service specification.

3. WPS specifies static services, whereas WCPS provides the flexibility of dynamic
ad-hoc query formulation. In other words, a WPS extension requires client and
server-side programming, whereas with WCPS this means composing a new
string on the client side, without any changes to the server.

4. WCPS supports phrasing of analytically expressible algorithms. WPS, on the other
hand, by definition is Turing complete; As experience shows, WCPS offers a high
potential for automatic chaining and optimization. WPS typically requires manual
server-side intervention, such as code tuning in supercomputing centers.

Therefore, mechanisms for automation already exist and it can be assumed that they could be
integrated with AI/ML. If there is an orchestrator (maybe referring to a register for the list of
available building blocks), then there is already a possible scenario for the next architecture. The
above can only be implemented leaving the flexibility to be automatically updated as stated
before, otherwise the result is a static approach. This orchestrator can be considered as another
API that is able to integrate different BBs.

To properly reflect the dynamic approach, an event driven mechanism (see event driven
architecture Pub/Sub) should be considered. However, this compounds the fact that more
and more streaming of information and algorithms can create active information signaling in a
streaming environment.

This new approach redefines the way information is shared between data and services. It can be
assumed that, first, an interaction space is required where data and building blocks can interact.

The building block, which could be defined using yaml, should include the following.

1. Metadata (it could be DGIWG Metadata File)

2. Specification (ogc-api reference)

3. Configuration (possible data values or streaming to be handled, etc.).

The above can be managed by an admission webhook (e.g., a listener waiting for a new BB to be
published, a registry service) that is validating and registering the Building Block.

OPEN GEOSPATIAL CONSORTIUM 23-050 34

http://databrticks.com

4.4. Interaction space

The interaction space could be a distributed object storage system, software defined, and should
operate with disconnected or limited connection capability.

The above elements should provide identity management, encryption, and possibly distribution.

The basic idea is to use W3C Decentralized Identifiers v1.0 (e.g., https://www.w3.org/TR/
did-core/). As an example, the Hyperledger Indy (https://www.hyperledger.org/projects/indy)
provides tools, libraries, and reusable components for providing digital identities rooted on
blockchains or other distributed ledgers so that they are interoperable across administrative
domains, applications, and any other silo. Indy is interoperable with other blockchains or can be
used standalone powering the decentralization of identity.

As an example, Hyperledger Fabric (https://www.hyperledger.org/projects/fabric) (for managing
provenance) is intended as a foundation for developing applications or solutions with a modular
architecture. Hyperledger Fabric allows components, such as consensus and membership
services, to be plug-and-play. Fabric’s modular and versatile design satisfies a broad range
of industry use cases. It offers a unique approach to consensus that enables performance at
scale while preserving privacy. Using Hyperledger, the yaml file previously described could be
substituted with a Smart Certificate.

While information security nowadays represents a core concern for any organization, Trust
Management is usually less elaborated and is only important when two or more organizations
cooperate towards a common objective.

For example, the overall Once-Only Principle Project (TOOP) (https://toop.eu/architecture) relies
on the concept of trusted sources of information and on the existence of a secure exchange
channel between the Data Providers and the Data Consumers in this interaction framework.
Trust and information security are two cross-cutting concerns of paramount importance. These
two concerns are overlapping, but not identical and they span all of the interoperability layers,
from the legal down to the technical, passing through organizational and semantic layers.

While information security aims at the preservation of integrity, confidentiality, and availability
of information, the establishment of trust guarantees that the origin and the destination of the
data and documents are trustworthy (trustworthiness) and authentic (authenticity), and that data
and documents are secured against any modification by untrusted parties (integrity).

Keeping in mind that the above are just examples and it would be interesting see different
implementations based on other concepts and tools.

4.5. Way ahead

The next-generation architecture should be based on Data Centric Security (DCS). The DCS
concept is implemented through the adoption of the Identity Provenance and Trust concept
(IPT). The concept can be improved with Integrity having an I2PT. The ecosystem that is

OPEN GEOSPATIAL CONSORTIUM 23-050 35

https://www.w3.org/TR/did-core/
https://www.w3.org/TR/did-core/
https://www.hyperledger.org/projects/indy
https://www.hyperledger.org/projects/fabric
https://toop.eu/architecture

proposed, which will be based on W3C Decentralized Identifiers (DID) and e.g., Hyperledger
(https://www.hyperledger.org/projects/indy), will enable both data and building blocks. The
entire architecture could be based on the concept of Kubernetes K8s volume abstraction
concept (https://kubernetes.io/docs/concepts/storage/volumes/) but can be any other
space where data and deployed APIs interact together. For data, W3C DID will be adopted
to create identity and other elements for provenance and trust in order to compose a Smart
Certificate. This is an active Certificate and can be chained with any other data or BB through
an orchestrator or registry. Building blocks (such as those of OGC API Standards) have to be
compatible with the IPT ecosystem. This is easier because by modifying the OGC Compliance
& Interoperability Testing Environment (CITE) it will be possible to certify BB to be compatible
with such an ecosystem, and so through a Smart Contract they can be registered in the
main registry /orchestrator. In this way both data and BB can be chained to perform specific
operations to be proposed to users or to other services.

The ecosystem that provides agile processing is based on Smart Contracts that run on a
Distributed Ledger, such as Hyperledger Fabric. The conditions in a Smart Contract enforce
that the provenance of data processing gets recorded on the distributes ledgers (Fabric nodes).
As such, the Hyperledger Fabric is concerned with making processing results transparent by
capturing provenance. The use of DID (W3C Recommendation) and VA (Verifiable Attestations)
is the essential part for establishing the integrity of assets, e.g., data products, metadata records,
etc., basically, anything that can be hashed. The issuing of DIDs for users and the recording
of immutable “Smart Certificates” a.k.a. verifiable attestations + some business logic, can be
implemented using, e.g., Hyperledger Indy. The combination of Hyperledger Indy and Fabric
builds the complete ecosystem to support agile IPT.

To clarify the basic architecture elements required to implement the next generation
architecture, below are implementation examples. The idea for using a Kubernetes persistent
volume example is just to show actual capabilities and consider in the future where any space of
interaction could be possible.

OPEN GEOSPATIAL CONSORTIUM 23-050 36

https://www.hyperledger.org/projects/indy
https://kubernetes.io/docs/concepts/storage/volumes/

Figure 7 — w3c did sample architecture

Figure 8 — hyperledger fabric sample architecture

OPEN GEOSPATIAL CONSORTIUM 23-050 37

Figure 9 — kubernetes persistent volume sample architecture

Transition from actual OGC data format (any) to a new version IPT enabled with Smart
Certificate

OPEN GEOSPATIAL CONSORTIUM 23-050 38

Figure 10 — ogc data formats transition

Transition from an actual OGC API (any) to a new version that is IPT enabled with a Smart
contract

OPEN GEOSPATIAL CONSORTIUM 23-050 39

Figure 11 — ogc api(s) transition schema

4.5.1. Possible implementation steps

Several steps for the transition to the next generation architecture are required as follows.

1. Data being moved to the new ecosystem (IPT based). Revision of data formats
standards to implement the new ecosystem.

2. Building block as per the definition provided in the previous section to be moved
to the new concept. This would require few changes from the current versions if
considering implementation of Smart Contract in the registry/orchestrator.

3. A standard Building Block definition based on OGC API standardization work
with an approved definition.

4. Registry/orchestrator: Evolution of the OGC WCPS Standard to interact
with Smart Contracts, or a confluence between pub/sub and WCPS. For the
generation-after-next architecture, a mechanism is envisioned to be implemented
using Smart Contract in which BB can actively interact among them and with data
(evolution of the WCPS/pubsub standard). Any data processing service MUST
record metadata on the processing (details to be defined in the standardization
process). This takes place by executing the associated Smart Contract that is
deployed on the Fabric Ledger. Also, when a processed data product is published,
a Verifiable Attestation is generated that can be used afterwards to validate the
Integrity of the data product. So, a WCPS instance executes Smart Contract and

OPEN GEOSPATIAL CONSORTIUM 23-050 40

only if that operation is successful does the VA gets created upon making the
data product available for supporting verification of the data set.

The data and the OGC API BB are automatically identified through their Smart Certificates and
Contracts properties. Solution building blocks (the ones used in the specific workflow) can also
be considered as a Smart Contract Component (SCC).

The solution workflow is generated and registered if all the components (data/building blocks)
are valid.

A practical example follows: To have the entire process start we need Data IPT enabled.
Schemas to issue certificates are registered (e.g. blockchain) and can be as many as required and
easily modifable.

Code required to generate an IPT based data (pdf, imagery, vector, processes..) in python

from io import BytesIO
 import sys
 import datetime
 import uuid

 from endesive.pdf import cms
 from pypdf import PdfWriter

 date = datetime.datetime.utcnow()
 date = date.strftime("%Y-%m-%dT%H:%M:%SZ")

 with open(out_pdf + ".pdf", "rb") as fh:
 bytes_stream = BytesIO(fh.read())

 writer = PdfWriter(clone_from=bytes_stream)
 writer.add_metadata(
 {
 "/IPT-Identifier": str(uuid.uuid4()),
 "/IPT-Publisher": "EU SatCen",
 "/IPT-Created": date,
 "/IPT-Releaseability": "CC-BY",
 "/IPT-Classification": "ultra open",
 "/IPT-AOI": "POINT(0 0)",
 "/IPT-CRS": "CRS84",
 "/IPT-Holder-DID": "FpsXsfj64R8N5gRYJjPdSE",
 "/IPT-CredentialDefinition": "3zC3MBQ31EV5Wom3UwUamj:3:CL:69:
PDF-1.0"
 }
)
 writer.write(bytes_stream)
 datau = bytes_stream.getbuffer().tobytes()
 out_pdf = out_pdf.replace(".pdf", "-IPT.pdf")
 with open(out_pdf, "wb") as fp:
 fp.write(datau)

Figure 12 — IPTcreation example

If the infrastructure (e.g. blockchain based), data and services (processes) are properly registered
to ensure provenance (e.g. registered in the blockchain), then trust of data is automatically
enabled. Once the IPT-based infrastructure is in place the records provenance is like the
following:

OPEN GEOSPATIAL CONSORTIUM 23-050 41

{
 "assetId": "ff6d96ea-12ce-4213-9dfd-f92629d820e3",
 "docType": "asset",
 "input": {
 "water": {
 "hash": "1e9d7c27c8bbc8ddf0055c93e064a62fa995d177fee28cc8fa949bc8a4db06f4
",
 "source": "Mangfall",
 "amount": 0.78211224
 },
 "image": {
 "smartCertificate": {
 "cred_def_id": "2hTqXuc1rS5YK4YwKH71Ag:3:CL:178:Teabag-2.0",
 "connection_invite_url": ""
 },
 "hash": "8e8b07089d97a16b1d7b9a23caed98caacb8d0c2858573343ea394ad8d87c08f
"
 }
 },
 "output": {
 "amount": 0.78211224,
 "type": "lemon",
 "brand": "Earl Grey",
 "hash": "3fa87694a746f1d08179c7523d832489124347b619e298154108b67d92a0554d"
 },
 "process": {
 "name": "Trusted Tea and Coffee Pot",
 "description": "I brew coffee and tea from trusted input impages",
 "developer": "Long John Silver",
 "smartCertificate": {
 "cred_def_id": "2hTqXuc1rS5YK4YwKH71Ag:3:CL:178:Teabag-2.0",
 "connection_invite_url": ""
 },
 "hash": "ad8d84f416aee607ecbf459a3d8e881c280b2c0d7c93a49283665ed59927ed16"
 },
 "description": "I just created a product of brand Earl Grey and type lemon",
 "productionDate": "2024-03-09T09:06:58.226005",
 "processingTime": 163.60591,
 "temperature": 99.71069,
 "kind": "TEA"
}

Figure 13 — Provenance definition

4.6. Artificial Intelligence

The approach of using Data Centric Security in a IPT makes geospatial systems more reliable
and secure. This approach can be applied to any other IT system, thus enabling more reliable
solutions for public use as well as moderating AI data production and usage. The information/
services properly IPT certified enable derived products and/or services to be easily consumed
by users because the products and/or services will be wearing a score about their validity in IPT
terms. The score could be represented with a simple 3 color code (e.g., red, yellow, green for
fully validated). This aspect obviously has an impact on the entire IT infrastructure and not only
for geospatial information.

OPEN GEOSPATIAL CONSORTIUM 23-050 42

An important aspect to be considered is the managing of real time data and its streaming. All
new architectures should consider the fact that more and more data are available and their quick
and reliable managing requires flexible architectures.

4.7. Use cases

In this section possible uses cases for the application of the Agile Reference Architecture are
described.

Image processing:

1. Raw image data (reception of new data from a generic sensor, but following Smart
Cerificate specification, the data are made available in the communication space).

2. Building block for orthorectification (An OGC API endpoint detects with the
Smart Object specification the presence of the data (or through the orchestrator)
and makes available the possibility to apply the orthorectification algorithm).

3. Building block histogram equalization (An OGC API endpoint detects with the
Smart Object specification the presence of the data (or through the orchestrator)
and makes available the possibility to apply the histogram equalization algorithm).

4. Orthorectified and equalized data available as a result of the chaining and with
the Smart Certificate defined considering the entire processing workflow.

OPEN GEOSPATIAL CONSORTIUM 23-050 43

5

GENERATION AFTER NEXT

OPEN GEOSPATIAL CONSORTIUM 23-050 44

5 GENERATION AFTER NEXT

5.1. Open issues

The previously described next-generation architecture leaves open several issues as follows.

• Real time data streaming.

• Quantum Computing/transmission:

1. sensors (are already available, as well as quantum radar in test phase);

2. data and processes applied (being the direct communication with the entangled
pair, all the actual mechanisms need to be revised); and

3. quantum computing.

• IPT ready data and Building blocks.

• Federation of systems (authority) collaboration with EU project like EBSI, etc. (Data Act).

• Limited or disconnected environments (the IPT can work standalone with a private key but
procedures for checking out/in to be established).

5.2. Future work

5.2.1. Data Centric Security

Extending and applying the Data Centric Security (DCS) scenarios and solutions for
authentication, authorization, and cryptographic key exchange from Testbed-18 (OGC 22-014
and OGC 22-018) in the context of Self-Sovereign Identity (SSI) with W3C Decentralized
Identifiers (DID) and Verifiable Credentials (VC) ecosystem. For authorization requests,
OpenID for Verifiable Credential Issuance may be considered. While OGC 22-014 relies on
a Key Management Service (KMS) as the central component, the use of a Decentralized Key
Management System [18] may be envisaged for achieving an agile reference architecture
relying on OGC API-based building blocks. This topic requires more detailed investigation and
prototyping.

OPEN GEOSPATIAL CONSORTIUM 23-050 45

https://docs.ogc.org/per/22-014.html
https://docs.ogc.org/per/22-018.html
https://openid.net/specs/openid-4-verifiable-credential-issuance-1_0-10.html

5.2.2. Discovery of Decentralized Applications

The current document proposed, in Clause 4.2, decentralized applications as a possible
path towards a Next Generation Architecture.

Decentralized applications are essentially smart contract-powered applications. Smart contracts
are contracts coded and stored on the blockchain. They automate agreements between the
creator and recipient. The contract execution is triggered automatically when conditions for
contract execution are satisfied. Contract details are eventually recorded on the blockchain
ledger as “on-chain” metadata. In such contexts, the integrity and provenance of contract inputs
and outputs is provided by the blockchain technology (e.g., Burzykowska et al. [19]).

A prototype implementation of such Decentralized applications cooperating to solve
a typical use case (e.g., around the D123 process), a detailed analysis as to where the OGC
API (Building Blocks) and/or containerized applications and data fit in such decentralized
application, and determining the remaining role of “discovery” through a registry/catalogue
are included in future work.

OPEN GEOSPATIAL CONSORTIUM 23-050 46

https://cointelegraph.com/learn/what-are-dapps-everything-there-is-to-know-about-decentralized-applications

A

ANNEX A (INFORMATIVE)
COMPONENT
DELIVERABLES

OPEN GEOSPATIAL CONSORTIUM 23-050 47

A ANNEX A
(INFORMATIVE)
COMPONENT DELIVERABLES

The following sections are descriptions of the work performed during OGC Testbed 19 to show
the current state of the architecture and determine shortcomings in design or functionality.

A.1. Component D121: An integrated knowledge base
linking machine-readable specifications required to
implement the target DDIL Use Case

Two key scenarios were implemented to support the DDIL Use Case.

1. Presentation of example building blocks in an integrated knowledge base.

2. Automatic documentation generation from machine-readable components.

A.1.1. Presentation of example building blocks in an integrated knowledge
base

The following assumptions were made about the building blocks:

• building blocks are made available in RDF formats; and

• APIs for the querying and retrieval of RDF can then be used to select building blocks.

To support the Testbed 10 DDIL Use Case, the authors of this ER assert that for a system
delivering information on building blocks to be useful, the building blocks must be able to be
searched and viewed in domain specific ways, such that a user can make sense of and assemble
a domain specific architecture composed of building blocks.

OGC provides a number of existing standards which offer methods in which spatial data and
metadata can be queried. These include the OGC API — Features Standard and OGC API —
Records Candidate Standard and specifically, one component: the Common Query Language
version 2 (CQL2). CQL is a formal language for representing queries to information retrieval
systems such as web indexes, bibliographic catalogs, and museum collection information. As the

OPEN GEOSPATIAL CONSORTIUM 23-050 48

building blocks are expressed as RDF, it is worth exploring whether existing systems which seek
to deliver spatial data in an OGC standards conformant manner can be extended to also deliver
the building blocks themselves.

The benefits of this approach are numerous.

• Full provenance and interrogation of the reference building blocks can be made available
alongside data delivered in conformance with the building blocks; at a minimum data or
systems can reference the building blocks.

• Granular parts of data or services can reference parts of the building blocks.

The set of basic use cases that can be supported by this approach are:

1. a user can search for building blocks by name, description, or other metadata;

2. a user can search for building blocks by spatial extent;

3. a user can search for building blocks by temporal extent;

4. a user can view a building block in a domain specific way, for example as a map or
as a table; and

5. a user can view a set of building blocks in a conformance specific way.

The Testbed participants attempted to demonstrate that the information required to generate a
map or table in a domain specific way can be returned — ignoring any specific implementation of
the map or table itself.

To explore the above use case, an existing system that the Testbed participants are familiar with,
Prez was extended to be compliant with the draft OGC API — Records Standard. Compliance
with OGC API — Records covers use cases 1-3, and existing functionality around profiles, built
to the ConnegP Recommendation, through extension, covers use cases 4 and 5.

To achieve OGC API — Records compliance, the participants determined the best method would
be to provide a CQL2 to SPARQL conversion. Initially, this was implemented in the D122 use
case using RDFrame, to assist in confirming that the profiling was correct. The mapping from
CQL2 to SPARQL was done via a common Python model, using Pydantic (validation library for
Python). This model allows for the creation of SPARQL queries using Jinja2 templates based on
a limited set of parameters targeted at describing objects, listing objects, and profiled views of
the object. Jinja2 is a web template engine for the Python programming language. To achieve
CQL2 compliance specifically, the test cases from the CQL specification were used to drive the
development of the model. These test cases are found here Building Blocks as JSON, within the
OGC API — Features Standard, which is referred to in the draft OGC API — Records Standard.

A.1.2. Demonstration system showing Building Blocks in a navigable
knowledge base

The demonstration system is available here

OPEN GEOSPATIAL CONSORTIUM 23-050 49

https://github.com/RDFLib/prez/
https://w3c.github.io/dx-connegp/connegp/
https://github.com/opengeospatial/ogcapi-features/tree/master/cql2/standard/schema/examples/json
https://kurrawong.github.io/ogc-building-block-api/catalogs

The system is based on the following components.

• A FastAPI based API, which provides the RDF content at endpoints which are conformant
with, and an extension to, the draft OGC API — Records Standard. FastAPI is a modern,
fast (high-performance) web framework for building APIs with Python 3.8+ based on
standard Python type hints. As part of the Records compliance, CQL2 filtering is provided
at the individual API endpoints.

• A CQL2 endpoint is provided, specifically for CQL2 JSON, to support more complex
or longer queries to be sent to a server via the API. This allows CQL2 queries to be
made against the RDF content, including spatial, temporal, and queries which filter on
properties.

A.1.3. Auto generation of documentation from machine-readable
components

Machine-readable building blocks as RDF also include human-readable properties (via
“annotations”), that is, labels, descriptions, and other literals which are human-readable text.
As the human and machine-readable formats are tied together, the ability to programmatically
combine building blocks based on user defined inputs, profiles, or even manual selections is
possible.

The PyLode tool was used for the creation of human-readable specifications directly from
RDF Ontologies (in place of building blocks in the current context). That is, a nicely formatted
printout of classes and properties within an ontology. For Testbed 19, the participants sought
to extend this tool to provide programmatic capability to support the ability to dynamically
construct specifications based on logic, profiles, or other user defined inputs. The changes to
PyLode to support the DDIL Use Case are described below.

A “Supermodel Profile” designed to represent multiple ontologies as a unified “supermodel” was
introduced prior to Testbed 19 — it provided a model basis but did not automate the creation of
documentation which used this model. It was demonstrated through the creation of an updated
Cadastral Survey Data Model for New Zealand, which was demonstrated within the testbed.
Within the current testbed, a profiling mechanism was introduced, allowing for modular and
scalable ontology documentation. At its core, these profiles enable users to construct detailed
models from components.

The key model changes/additions are summarized in the table below.

Table A.1

PROPERTY DESCRIPTION

prof:isProfileOf Denotes the association of a component to its overarching profile

lode:componentModel
Defines a “Component Model,” a model that is a component of a broader model, such
as a supermodel.

OPEN GEOSPATIAL CONSORTIUM 23-050 50

https://github.com/RDFLib/pyLODE

PROPERTY DESCRIPTION

lode:ignoreClass Signals specific classes to be overlooked during the documentation process.

lode:
isQualifiedProfileOf

Links to qualified nodes that are associated with a profile, ensuring only relevant
classes within a profile are loaded.

By emphasizing a component-driven design, the profiles feature ensures that ontology models
have the flexibility to be both intricate and organized.

A.2. Component D122: The Agile Reference Architecture
represented in RDF/Turtle format

The Agile Reference Architecture represented in RDF/Turtle format (i.e., a description of how the
components and specifications are related in the form of a reusable pattern that can be adapted to
new circumstances)

A.2.1. Introduction

In Testbed 19, the participants demonstrated the inherent interoperability of building blocks
expressed in RDF/Turtle format. The participants demonstrated a new tool developed in this
Testbed, RDFrame. RDFrame supports the composition and viewing of the implementations of
the reference architecture described in this Engineering Report. Concretely, RDFrame provides
profiled views of building blocks according to programmatic logic, either explicit interoperability
declarations, or more complex, rule based logic.

The participants further explored the extension of existing documentation tooling for the
automated creation of building blocks.

The participants also demonstrated a use case for maintaining the building blocks in RDF/Turtle
format: composition of human-readable specifications from the machine-readable building
blocks. As part of this process, specification of the relevant parts (also expressed as data) allows
the creation of a domain specific architecture.

A.2.2. RDF Context

In many symbolic systems, context provides meaning to symbols, allowing them to gain meaning
beyond their individual representation. For geospatial data, each resource in RDF — whether
a datum, process, or standard — can be viewed as such a symbol. Using RDF metadata, these
resources self-define, indicating their roles, relationships, and functions. Notably, there is no
need for an external reference architecture: The building blocks themselves convey compatibility
and together establish the architecture.

OPEN GEOSPATIAL CONSORTIUM 23-050 51

The interoperability of the building blocks in general is supported by the interoperability of the
underlying linked data standards, which are themselves building blocks, and allow for arbitrary
extensibility. At its core, RDF allows “anyone to make a statement about anything.” There is
a loose distinction between metadata and data — both are represented in the same way. In a
very direct sense, the statement, “David’s report has content about RDF,” and the time at which
such a statement was made would be recorded in an RDF database within the same (and only)
kind of data structure, a triple. In this context, more effort can be placed on reusing existing
standards and building blocks, rather than creating new ones, and only revising or extending the
more general use cases to support project specific needs. This prevents the proliferation of new
standards, data silos, and non-interoperable systems.

Figure A.1

A.2.3. Reusability

While the task of specifying how and where specific building blocks can be used, and therefore
reused, is left to domain experts, some level of declarative reusability statements between
building blocks is assumed. That is to say, a given set of building blocks, to be reused must all be
compatible with each other. This could take a number of forms, a given building block “A” could
declare it is compatible with building block “B” only, or building blocks of type “Class 1” could
declare they are compatible with building blocks of type “Class 2.” More complex statements
including conditional logic could also be considered, however these are not considered here.
Some basic use cases are shown below.

The machine readability of RDF supports the use of automated reasoning to determine the
reusability of building blocks. This is a key advantage of using RDF as a representation format,
as it allows for the use of automated reasoning to determine the reusability of building blocks.
The work done in D121 is related. In this work, software was developed to automatically create
a human-readable standard from a set of building blocks. There was an implicit or assumed

OPEN GEOSPATIAL CONSORTIUM 23-050 52

compatibility between the building blocks, which is based on the knowledge of the user creating
the standard. In this Testbed, as in deliverable D122, the participants explored making this
compatibility explicit. Use cases of the machine readability could include validation of specific
architectures composed of building blocks, and recommendations of building blocks to use in a
given context.

To explore this idea further, a few illustrative examples of the compatibility are represented
below.

Figure A.2

Figure A.3

The building blocks can then be tested for compatibility using a SPARQL query, and the
validation or rules can be represented in the Shapes Constraints Language, or SHACL. However,
this is not strictly necessary with the explicit compatibility declarations given above. The SHACL
rules below provide logic to test the compatibility of building blocks in the two scenarios
outlined above.

OPEN GEOSPATIAL CONSORTIUM 23-050 53

Figure A.4

Compatibility tooling was developed to demonstrate how machine-readable definitions of
compatibility can be used dynamically to query conformance between building blocks. The tool
developed for Testbed 19 was called RDFrame, suggesting that the tool frames or profiles RDF
in a particular way, similar to JSON-LD framing. A simple UI was created for the tool, comprising
the following displays.

1. Runtime information for user interfaces where building blocks are browsed,
or otherwise dynamically delivered by an API, provides context such as search
terms, specific building block identifiers for retrieval, and spatially or temporally
scoped information.

2. The selection of “target” or “focus nodes” in RDF: Within the scope of this ER,
these would primarily be building blocks expressed in RDF. This is primarily done
with sh:targetNode where the building block of interest is known; sh:targetClass
where building blocks of a particular Class or Subclass are known, and the use
of more detailed subqueries where a more complex description of the building
blocks to be selected is required.

3. A profile definition in RDF: The profiles are used to shape descriptions of Building
Blocks, or related entities, based on the selected “nodes” or “building blocks” from
the first point. This again primarily uses SHACL.

4. A SPARQL query generated from the target selection, profile and runtime
information.

5. Example data — in this case the reference architecture building blocks.

6. The resulting “Framed” or “Profiled” RDF is shown in Figure A.5. Not shown
in the quadrants is the supply of runtime information. This will be added as an
enhancement to the tool. Runtime information could include a “focus block”
which could provide information according to a particular profile. One example

OPEN GEOSPATIAL CONSORTIUM 23-050 54

https://www.w3.org/TR/shacl/

is a class of building block which could list instances. Another is a “focus block”,
from which, by relationships, could list related blocks. This runtime information
is synonymous with the profiles themselves with the difference being this
information is typically only known “at runtime” or when a user interacts with the
system, whereas the profiles define “general saved view” that users find useful. A
screenshot of the tool is shown below.

Figure A.5 — Example of profiled RDF and associated SPARQL

A.2.4. Adaptation to new circumstances

Use of RDF as the Agile Reference Architecture allows for reuse of the Simple Knowledge
Organization System, or SKOS. SKOS is an established ontological framework for modeling
concepts, schemes, and collections of these. The reference building blocks supplied are, in fact,
classed both building block types and concepts providing an immediate framework to extend
building blocks to incorporate existing knowledge or concepts.

As the data and metadata is expressed in RDF, both are capable of being used with APIs,
enhancing ‘queryability’ across large collections of building blocks, including spatial, free text,
and organizational hierarchies (such as OGC API — Records and OGC API — Features, and
general ontologies such as SKOS.)

OPEN GEOSPATIAL CONSORTIUM 23-050 55

A.3. Component D123: An instance of OGC API –
Processes

This section discusses the context, plan, and motivation for the enhancement of the OGC API —
Processes component within the realm of the Agile Reference Architecture.

An activity included in this Testbed was the implementation of an instance of OGC API -
Processes for demonstrating the improvement in a Technology Integration Experiment (TIE)
which is described later in this section.

A.3.1. Context

The OGC API — Processes Standard plays a pivotal role in offering a standardized interface for
the discovery, execution, and retrieval of processing functionalities.

A.3.1.1. Target Objectives

An Agile Reference Architecture aims to be adaptable, modular, and future-proof. From the
range of activities outlined for research in the Testbed 19 ARA thread, including resilience,
universal access, etc., the participants specifically focused on addressing integration,
interoperability, and the transformation of data into locally-useful forms.

• Integration ensures that different parts of an ecosystem can work harmoniously, sharing
data and executing functions without redundancy or conflicts.

• Interoperability extends beyond integration. It ensures that different systems, perhaps
developed independently and with varying standards, can communicate and work
together. In the context of geospatial data and services, this means that data and services
from different sources or standards can be combined, processed, and presented uniformly.

With the proliferation of data sources in diverse formats and from varied origins, the challenge
is not just collecting data, but transforming it into a locally-useful form. This transformation is
not merely about data conversion, but about ensuring that the transformed data is meaningful,
actionable, and optimized for the local context in which it is used.

A.3.1.2. OGC API — Processes Enhancement

Given the potential and existing challenges of the OGC API — Processes, the focus of the
participants in this Testbed ARA thread included the following.

• Dynamic Chaining of Processes: Infusing agility principles into the OGC API - Processes
Standard to support dynamic chaining, leveraging abstraction layers (building blocks) atop
I/O, and enabling protocol negotiation for enhanced interoperability.

OPEN GEOSPATIAL CONSORTIUM 23-050 56

• Interoperability of I/O Formats: Addressing the potential challenges when chaining
nearly compatible processing units and ensuring smooth data format transitions without
necessitating application modifications.

• Data Transformation: Ensuring that data can be seamlessly transformed between
heterogeneous sources into locally-useful formats, considering potential needs for
reformatting or scaling.

This refined focus was derived from weekly meetings in which the participants established a
clear scope for the Deliverable OGC API — Processes implementation (D123) and identified
concrete enhancements that contribute to the review of a new agile architecture.

A.3.1.3. Motivation

A.3.1.3.1. Strengths of OGC API — Processes

The current OGC API — Processes Standard has several strengths as follows.

1. Discoverability: Users can effortlessly discover services. For instance, once Alice
(a user persona) registers an application in an OGC application package, Bob
(another user persona), without any in-depth knowledge of its implementation,
can discover and interact with the service.

2. Execution: An implementation of the OGC API — Processes Standard provides a
standardized operation for executing processes. This process handles the intricate
details, including staging of inputs, scheduling, execution within the container,
and results stage-out.

3. Retrieval: Users can retrieve results in a streamlined and consistent manner,
ensuring the users always know where and how to obtain their data.

A.3.1.3.2. Gaps for chaining processes

The OGC API — Processes Standard also has some weaknesses. The Standard falls short when
providing requirements and guidance for chaining processes that are nearly compatible but have
slight differences. For instance, the passing of a subset region of a coverage to a second process
is not supported.

• Interoperability of I/O Formats: Different processes may have distinct input and
output formats. For instance, the ability to chain a process that produces an output in
the Esri Shapefile (SHP) format with another one expecting GeoJSON as input is not
straightforward.

• Data Subsetting: There are instances where only a temporal or spatial subset (or other
tailoring) of the data might be necessary. The current OGC API — Processes Standard does
not inherently cater to such subsetting needs.

OPEN GEOSPATIAL CONSORTIUM 23-050 57

A.3.1.3.3. Fictional Use Case: URBA and CITYSTATS

To illustrate the gaps, consider a chaining scenario involving two fictional processes: URBA and
CITYSTATS:

URBA: — Description: An environmental analysis software application tracking urbanization in
cities. — Input: Vector representations (roads, buildings, parks, etc.) spanning the last 20 years. —
Output: A heatmap pinpointing rapid urban growth areas, provided in SHP file format.

CITYSTATS: — Description: A geospatial tool yielding neighborhood project stats. — Input:
Various data, including URBA’s heatmap, but in GeoJSON format. — Output: A project score,
presented in TXT format.

When attempting to chain URBA and CITYSTATS, the issue arises from the differing I/O
formats. While URBA outputs a SHP file, CITYSTATS expects GeoJSON as input. The current
OGC API — Processes, Standard does not easily support such chaining without extensive
modifications or interventions from developers.

A.3.2. Proposed Solution

The goal of the participants was to draft and prototype the enhancement of the current
capabilities of the OGC API — Processes Standard to align with the objectives of the Agile
Reference Architecture. This alignment requires a solution that addresses the complexities of
process chaining, data transformation, and interoperability. The detailed approach is described in
the following subsections.

A.3.2.1. Integration of OGC Building Blocks

Note: For the purpose of this ER and this aspect of the Testbed 19, a `building
block’ strictly adheres to the OGC’s official definition presented in Clause 3.3.1.

Within the context of a processes chain, a building block can play a critical role in facilitating
the interoperability of processes. By supporting building blocks as input, a system would have a
standardized method to access and manipulate data (still enabling the process native format).

The results of each process can be provisioned as separate building blocks, ensuring ready
availability for subsequent processes or data transformations.

The `building blocks’ provide an abstract data store as they allow data to be stored in a format-
agnostic manner, making it more adaptable to varying processes. With data stored as building
blocks, operations such as subsetting or reformatting can be handled more easily.

OPEN GEOSPATIAL CONSORTIUM 23-050 58

A.3.2.2. Provisioning of Transient Building Blocks

The solution relies on a set of assumptions for the building block components that can be
provisioned with the output data of processes.

First, it is crucial for the provisioned building block components to serve data dynamically. As
processes generate outputs, these outputs can be immediately provisioned as building blocks
without waiting for batch operations or manual intervention.

This ensures that the vector data can be dynamically mounted to and from containers.

Also, the components should handle a variety of native formats, granting us greater flexibility in
process chaining.

A.3.2.3. Implementation of a Processing Server

The server implementation must be designed to pull data from building blocks, exposing the
building-block specific parameters of the API. However, the data should be retrieved in the
correct local format required for any given process.

Once a process has been run, the server will take the outputs and dynamically provision an OGC
API Features building block, ensuring the results are readily accessible.

A.3.3. Implementation

The Testbed-19 OGC API — Processes Proof of Concept (PoC) is a comprehensive
implementation designed to demonstrate the new capabilities elaborated above, based on the
OGC API — Processes Standard version 1.0.0.

The following operations are integral to this implementation.

• List Processes (GET /processes): This operation enumerates all the processes the server
supports, acting as an entry point for users to explore available functionalities.

• Describe Process (GET /processes/{id}): This operation, associated with the HTTP
resource GET /processes/{id}, where {id} is the unique identifier for a process,
provides detailed information about a specific process, which is essential for users to
understand process capabilities and requirements.

• Execute (POST /processes/{id}/execution): Triggered by POST /processes/{id}/
execution, where {id} identifies the process, this operation initiates the execution of a
process. It requires a JSON-formatted payload detailing the necessary inputs and desired
outputs for the process. Inputs can be either direct values or references, while outputs
specify the data types expected from the process execution.

• Jobs Status (GET /jobs/{id}): Linked to GET /jobs/{id}, with {id} being the job
identifier, this operation provides real-time status updates for a job. The status codes

OPEN GEOSPATIAL CONSORTIUM 23-050 59

include ‘accepted,’ ‘running,’ ‘successful,’ ‘failed,’ or ‘dismissed,’ offering clear insights into
the job’s lifecycle.

• Jobs Results (GET /jobs/{id}/results): Associated with GET /jobs/{id}/results,
where {id} is the job identifier, this operation is used to retrieve the results post job
execution. The results may be provided as either inline data or as references (links) to the
data.

• List Jobs (GET /jobs/): This operation lists all jobs, both currently executing and
previously executed by the server, providing a comprehensive view of server activity.

• Cancel Job (DELETE /jobs/{id}): Corresponding to DELETE /jobs/{id}, this operation
specifies the dismissal of an ongoing job execution, effectively canceling the job execution
and marking its status as ‘dismissed.’

A.3.3.1. Design Overview

The OGC API — Processes implementation is a microservice written in Java and comprises the
following architectural components.

• Java Application: This application utilizes the Spring Boot Framework (version 3.0.0) for
its simplicity and efficiency serving as the core of the implementation, facilitating the
execution of various operations defined by the OGC API — Processes Standard.

• Data Persistence & PostgreSQL: Hibernate is employed for database operations. Hibernate
facilitates the management and persistence of data, offering a powerful, high-performance
Object/Relational persistence and query service.

• Kubernetes Integration: Fabric8 toolkit for Kubernetes simplifies the deployment and
management of Kubernetes resources, streamlining the process of running and monitoring
Kubernetes jobs which execute the core processes.

• LDProxy Server: LDProxy is an OGC API — Features implementation which steps in to
expose and manage the source and the resulting geographic features, acting as a bridge
between the Kubernetes jobs and end-user accessibility.

The entire suite, including the OGC API — Processes, PostgreSQL database, and LDProxy server,
is seamlessly deployed on a Kubernetes cluster hosted at Spacebel.

The following specific Docker images were used.

• LDProxy: iide/ldproxy:3.5.0

• PostgreSQL: postgres:15-alpine

• Spring Boot Application: eclipse-temurin:17-jre-alpine

OPEN GEOSPATIAL CONSORTIUM 23-050 60

A.3.3.2. Components Configuration

The OGC API — Processes server is configured with the following properties.

• SPRING_DATASOURCE_URL: The JDBC URL used to connect to the PostgreSQL
database. A JDBC URL provides a way of identifying a database so that the appropriate
driver recognizes and connects to the database. KUBECONFIG: The Kubernetes
configuration file used to connect to the Kubernetes cluster in order to manipulate K8S
resources (Jobs).

The LD Proxy server requires two volume mounts:

• /ldproxy/data/api-resources/features: path used to store the features exposed by the
server; and

• /ldproxy/data/store: path used to store the configuration files used to expose the
features.

For each feature exposed by the LD proxy server, two configuration files must be provided: - /
store/entities/features/providers/my-product.yml : configuration file describing the feature;
and - /store/entities/features/services/my-product.yml: configuration file describing the service
used to expose the features.

The dataset used in the frame of the proof of concept is the ‘Daraa’ dataset. This is a test
dataset was used in the Open Portrayal Framework thread in OGC Testbed-15. The dataset
is based on OpenStreetMap data from the region of Daraa, Syria, converted to the NGA
Topographic Data Store schema.

A.3.3.3. Reproject Process

The “Reproject” process in the Testbed-19 OGC API — Processes Proof of Concept is designed
to transform geospatial features from one coordinate reference system (CRS) to another. This
process is critical in scenarios where data interoperability and integration across different
geospatial data sources are needed. Implementation of process ensures that geospatial features
can be utilized effectively across various systems and applications.

The process accepts two types of inputs.

• Input-features consists of geospatial features provided in the GeoJSON format.

• Reprojection-code defines the target CRS to which the input features will be transformed.
Typically represented as an EPSG code, this string input directs the process in aligning the
features to the desired geospatial reference framework.

{
 "title": "Reproject process",
 "description": "Reproject features",

OPEN GEOSPATIAL CONSORTIUM 23-050 61

 "keywords": ["geopackage","geojson","reproject"],
 "id": "reproject",
 "version": "1.0",
 "jobControlOptions": ["sync-execute"],
 "outputTransmission": ["value"],
 "inputs": {
 "reprojection-code": {
 "title": "reprojection-code",
 "keywords": [
 "input"
],
 "minOccurs": 1,
 "maxOccurs": 1,
 "schema": {
 "type": "string",
 "contentMediaType": "plain/text",
 "contentEncoding": "text"
 }
 },
 "input-features": {
 "title": "input-features",
 "keywords": [
 "input"
],
 "minOccurs": 1,
 "maxOccurs": 10,
 "schema": {
 "type": "string",
 "format": "ogc.geo.features.featureCollection",
 "contentMediaType": "application/geo+json",
 "contentEncoding": "text"
 }
 }
 },
 "outputs": {
 "reprojected-features": {
 "title": "reprojected-features",
 "description": "reprojected features",
 "keywords": [
 "output"
],
 "schema": {
 "type": "string",
 "format": "ogc.geo.features.featureCollection",
 "contentMediaType": "application/geopackage",
 "contentEncoding": "binary"
 }
 }
 }
}

Figure A.6

A.3.3.4. Execution Sequence

The execution of the “Reproject” process aligns with the Agile Reference Architecture’s
objectives, such as integration, interoperability, and transforming data into locally-useful forms.

Initially, users select the input features through the LD-Proxy web interface, accessing the Daraa
test dataset. This platform allows for nuanced selection based on geographical zones or time

OPEN GEOSPATIAL CONSORTIUM 23-050 62

periods. The chosen GeoJSON URL from this selection process becomes the href value in the
payload for input-features.

The users also define the reprojection parameters by specifying the desired CRS. While
EPSG:4326 is the default, the parameters can be modified to any preferred CRS.

{
 "inputs":{
 "input-features": {
 "href": "http://172.17.20.10:30088/rest/services/daraa/collections/
AeronauticCrv/items?f=json&bbox=36.4005%2C32.6950%2C36.4111%2C32.7047&datetime=
2011-03-16T14%3A51%3A12Z%2F2013-12-27T12%3A47%3A07Z"
 },
 "reprojection-code": "EPSG:4296"
 },
 ...
}

Figure A.7

Upon completion of these steps, an HTTP POST request is made to /processes/reproject/
execution with the defined payload. This action initiates the backend process where a
Kubernetes job is launched. This job is responsible for:

• downloading the GeoJSON resource;

• reprojecting the data according to the specified CRS using GDAL ogr2ogr command;

• storing the reprojected data in a new volume; and

• provisioning a new instance of IDProxy server based on the newly created volume.

The response of the server includes a URL pointing to the reprojected features. This URL can be
accessed via a web browser to visualize the transformed data.

{
 "reprojected-features": {
 "href": "http://172.17.20.10:30188/rest/services/newproduct/
collections"
 }
}

Figure A.8

OPEN GEOSPATIAL CONSORTIUM 23-050 63

A.4. Component D124: An instance of OGC API –
Features serving OpenStreetMap data

A.4.1. Overview

The requirement for this deliverable was:

An instance of OGC API — Features serving OpenStreetMap data represented
according to the NSG Topographic Data Store schema

interactive instruments provided two API instances that implemented OGC API — Features
Standard to access OpenStreetMap data. One of the API endpoints represented the
OpenStreetMap data according to the NSG Topographic Data Store schema.

Both API implementations use ldproxy, an OGC Reference Implementation for the OGC API —
Features Standard.

A.4.2. Daraa API

A.4.2.1. Overview

Link to the API Landing Page

The first API instance is an existing Features API implementation that interactive instruments
maintains as one of the ldproxy demonstration APIs. The Daraa dataset has been used in
previous OGC testbeds and pilots. It is based on OpenStreetMap data from the region of Daraa,
Syria, converted to the NGA NSG Topographic Data Store schema.

This API implementation also provides resources from the OGC API — Tiles Standard and the
draft OGC API — Styles Standard.

A.4.2.2. Dataset

Download as GeoPackage

The Daraa dataset was provided by the US National Geospatial Intelligence Agency (NGA) for
development, testing, and demonstration in initiatives of the Open Geospatial Consortium
(OGC). For any reuse of the data, please contact NGA.

OPEN GEOSPATIAL CONSORTIUM 23-050 64

https://github.com/interactive-instruments/ldproxy#readme
https://demo.ldproxy.net/daraa
https://github.com/ldproxy/demo/raw/main/api-resources/features/daraa.gpkg?download=

A.4.2.3. ldproxy Configuration

To deploy one or more APIs with ldproxy, configuration files for the deployment are needed. The
configuration is typically maintained in a git repository.

For the demo.ldproxy.net deployment, which includes the Daraa API, the configuration is
available at https://github.com/ldproxy/demo.

Since it is a demonstration deployment, the repository also contains additional documentation
about the different APIs.

A.4.2.4. Deployment

ldproxy is only distributed as a Docker image. The configuration repository also includes a
Docker Compose file to simplify the process of starting a local deployment.

A.4.3. Tunisia API

A.4.3.1. Overview

Link to the API Landing Page (requires credentials)

The second Testbed 19 ARA API implementation is based on OpenStreetMap data from Tunisia,
converted to a variant of the MGCP schema used by European Union Satellite Center (SatCen).

A.4.3.2. Dataset

The Tunisia dataset was provided by SatCen to interactive instruments for use in Testbed-19 in
the Esri File Geodatabase format. This dataset is not publicly available.

A.4.3.3. Initial ldproxy Configuration

Initially, a minimal configuration was created, consisting of the following files:

api-resources/features/tunisia0523.gpkg
cfg.yml
store/entities/providers/tunisia.yml
store/entities/services/tunisia.yml

Figure A.9

For more information about ldproxy configurations, see the ldproxy documentation.

OPEN GEOSPATIAL CONSORTIUM 23-050 65

https://github.com/ldproxy/demo
https://t19.ldproxy.net/tunisia
https://docs.ldproxy.net/application/30-data-folder.html

The GeoPackage file api-resources/features/tunisia0523.gpkg was generated from the
Esri File Geodatabase using GDAL.

store:
 mode: READ_ONLY
server:
 externalUrl: ${EXTERNAL_URL:-https://t19.ldproxy.net}
logging:
 level: ERROR
 appenders:
 - type: console
 timeZone: Europe/Berlin
 loggers:
 de.ii: INFO

Figure A.10 — Global configuration (cfg.yml)

id: tunisia
entityStorageVersion: 2
providerType: FEATURE
providerSubType: SQL
connectionInfo:
 database: api-resources/features/tunisia0523.gpkg
 dialect: GPKG
auto: true

Figure A.11 — Feature provider (store/entities/providers/tunisia.yml)

id: tunisia
serviceType: OGC_API
entityStorageVersion: 2
metadata:
 attribution: "Copyright \xA9 by the European Union Satellite Centre (EU
SatCen), 2023. All rights reserved."
 contactEmail: portele@interactive-instruments.de
 contactName: Clemens Portele, interactive instruments GmbH
 creatorName: European Union Satellite Centre (EU SatCen)
 licenseName: All rights reserved
 publisherName: interactive instruments GmbH
 publisherUrl: https://www.interactive-instruments.de
auto: true

Figure A.12 — API building blocks (store/entities/services/tunisia.yml)

A.4.3.4. Initial Deployment

The following Docker Compose file was used to test a local deployment.

version: '3.9'
services:
 ldproxy:
 image: iide/ldproxy:next

OPEN GEOSPATIAL CONSORTIUM 23-050 66

 container_name: ldproxy_t19
 ports:
 - "7080:7080"
 volumes:
 - .:/ldproxy/data
 environment:
 - EXTERNAL_URL=http://localhost:7080/rest/services

Figure A.13 — Docker Compose file (docker-compose.yml)

When starting the API instance with docker compose up:

• the feature types with their properties were derived from the database; and

• the default ldproxy API building blocks were enabled (basically all building blocks from
OGC API — Features Part 1 and 2) with their default configuration.

The API endpoint was then ready to serve the feature data. The following is a screenshot of the
first HTML page of collection PZD040:

Figure A.14 — Initial PZD040 features representation

Such an API is only useful, if the user / client understands what a PZD040 feature is or what the
meaning of an attribute ACC with a value 1 is.

A.4.3.5. Updated configuration and deployment

SatCen maintains a data dictionary for their datasets that provides this schema information. The
data dictionary was provided to interactive instruments as a XML file.

OPEN GEOSPATIAL CONSORTIUM 23-050 67

Using a Python script, the configuration for the feature types was updated to include titles and
descriptions for feature types and attributes, constraints on attributes and the codelists for
coded values. In addition, additional API building blocks were enabled.

After restarting the API endpoint, the first HTML page of collection PZD040 included additional
information about the feature type, attributes, and value.

Figure A.15 — Updated PZD040 features

The ldproxy Schema building block was also enabled in the configuration and enables clients
to determine the schema of the features in the dataset. The following is the schema for the
PZD040 features.

NOTE: Since not all feature types and attributes in the dataset were included in the data
dictionary, some feature types and attributes are lacking schema information such as title,
description, and constraints.

{
 "title" : "PZD040 - Named Location (Point)",
 "description" : "A location that normally does not appear as a specific,
characterized object but that has a name that is required to be displayed
in association with that location. (For example, the name of the Alps or the
Sahara.)",
 "properties" : {
 "ACC" : {
 "title" : "Horizontal Accuracy Category",
 "description" : "A general evaluation of the horizontal accuracy of the
geographic position of a feature, as a category.",
 "enum" : [1, 2],
 "type" : "integer"
 },
 "CCN" : {

OPEN GEOSPATIAL CONSORTIUM 23-050 68

 "title" : "Commercial Copyright Notice",
 "description" : "A description of any commercial (or similar) copyright
notice applicable to information regarding the feature or data set. ",
 "type" : "string"
 },
 "NAM" : {
 "title" : "Name",
 "description" : "A textual identifier or code that is used to denote a
feature.",
 "type" : "string"
 },
 "NFI" : {
 "title" : "Named Feature Identifier",
 "description" : "The unique named feature identifier element in the NGA
Geographic Names Data Base (GNDB). (Typically used together with Attribute:
'Name Identifier' to provide a unique index into the NGA Geographic Names Data
Base (GNDB) from which NGA draws all of its feature name information.)",
 "type" : "string"
 },
 "NFN" : {
 "title" : "Name Identifier",
 "description" : "The unique name identifier element in the NGA
Geographic Names Data Base (GNDB). (Typically used together with Attribute:
'Named Feature Identifier' to provide a unique index into the NGA Geographic
Names Data Base (GNDB) from which NGA draws all of its feature name
information.)",
 "type" : "string"
 },
 "OBJECTID" : {
 "x-ogc-role" : "id",
 "type" : "integer"
 },
 "SDP" : {
 "title" : "Source Description",
 "description" : "A description of the data set that was used to define
the digital representation of the feature or data set. (No restriction is
placed on the length of the description.)",
 "type" : "string"
 },
 "SDV" : {
 "title" : "Source Date and Time",
 "description" : "The date and, optionally, time of collection of the
data set that was used to define the digital representation of the feature
or data set. (Midnight is understood to be 00:00:00 (the beginning of a
day); when the time is not specified then midnight in the local time zone is
typically implied.)",
 "x-ogc-role" : "primary-instant",
 "format" : "date-time",
 "type" : "string"
 },
 "SRT" : {
 "title" : "Source Type",
 "description" : "The type(s) of the data set(s) that were used to define
the digital representation of the feature or data set. (For example, based on
a data product specification.)",
 "enum" : [0, 1, 10, 11, 110, 111, 112, 113, 114, 115, 116, 117, 118,
119, 120, 121, 16, 17, 18, 19, 2, 20, 21, 22, 24, 25, 26, 27, 29, 3, 30, 31,
32, 33, 34, 36, 37, 38, 39, 4, 40, 41, 42, 43, 44, 45, 46, 47, 48, 5, 50, 51,
 52, 53, 54, 55, 56, 57, 59, 6, 60, 61, 62, 63, 64, 65, 7, 8, 85, 92, 93, 94,
95, 996, 997, 998, 999],
 "type" : "integer"
 },
 "Shape" : {

OPEN GEOSPATIAL CONSORTIUM 23-050 69

 "x-ogc-role" : "primary-geometry",
 "format" : "geometry-point"
 },
 "TXT" : {
 "title" : "IA Comments",
 "description" : "A narrative or other textual description associated
with a feature or data set.",
 "type" : "string"
 },
 "UID" : {
 "title" : "MGCP Feature Universally Unique Identifier",
 "description" : "A unique identifier for each instance of MGCP Feature
assigned by national system in accordance with ISO /IEC 9834-8 standard.
The UUID shall be represented by a string of hexadecimal digits, using two
hexadecimal digits for each octet of the binary form.",
 "type" : "string"
 },
 "XAN" : {
 "title" : "Annotation type",
 "description" : "Different types of text, in essence, labels, on a map
hat display useful information.",
 "enum" : [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
 "type" : "integer"
 },
 "XAS" : {
 "type" : "string"
 },
 "XCL" : {
 "title" : "Security Classification",
 "description" : "Security level assigned to document, file, or record
based on the sensitivity or secrecy of the information.",
 "enum" : [2, 3, 4, 5, 6, 0, 999],
 "type" : "integer"
 },
 "XFA" : {
 "type" : "string"
 },
 "XPC" : {
 "title" : "Product Code",
 "description" : "Product Code according to the SatCen Task Management
Tool",
 "type" : "string"
 },
 "XRE" : {
 "title" : "Releasability",
 "description" : "Capable of being deliverable to other institutions.
Example: \"Releasable to….\"",
 "type" : "string"
 },
 "XSD" : {
 "type" : "string"
 },
 "XSI" : {
 "title" : "Imagery Source Universally Unique Identifier",
 "description" : "A unique identifier for the associated imagery
source used for the features. The USID shall be represented by a string of
hexadecimal digits, using two hexadecimal digits for each octet of the binary
form.",
 "type" : "string"
 },
 "XTA" : {
 "type" : "string"
 }

OPEN GEOSPATIAL CONSORTIUM 23-050 70

 },
 "type" : "object",
 "required" : ["ACC", "CCN", "NAM", "SDP", "SDV", "SRT", "XAN", "XCL", "XPC",
 "XRE"],
 "$schema" : "https://json-schema.org/draft/2020-12/schema",
 "$id" : "https://t19.ldproxy.net/tunisia/collections/PZD040/schema"
}

Figure A.16 — Schema of the PZD040 features

A.5. Component D125: An instance of OGC API —
 Features supporting real-time observations

A.5.1. Overview

The requirement for this deliverable was:

an instance of OGC API — Features (and/or STA and/or EDR) — supporting
real-time observations of some phenomena relevant to the Use Case, supports
sufficient semantic annotation to identify necessary contextual information to
support reuse.

interactive instruments provided a Features API endpoint that publishes surface-based weather
observations that are harvested from the WMO Information System (WIS) 2.0. In addition to
accessing the data using the OGC API — Features building blocks, the API also supported the
draft OGC API — Environmental Data Retrieval — Part 2: Publish-Subscribe Workflow building
blocks for feature resources.

The API uses ldproxy, an OGC Reference Implementation for OGC API — Features. As part of
Testbed 19, interactive instruments extended the ldproxy to support PubSub building blocks.

A.5.2. Components

A.5.2.1. Overview

In order to publish observation data via the PubSub extension for OGC API — Features, a
system consisting of several components was developed and deployed. Figure A.17 provides an
overview of the relevant components and their interactions.

OPEN GEOSPATIAL CONSORTIUM 23-050 71

https://community.wmo.int/en/activity-areas/wis/wis2-implementation
https://github.com/interactive-instruments/ldproxy#readme

Figure A.17 — Components in the system (from interactive instruments) that
provides observation data via the PubSub extension for OGC API - Features

The WIS 2.0 MQTT broker is an external component. It publishes weather observations from
countries across the globe. MQTT is an OASIS standard messaging protocol for the Internet of
Things (IoT).

The WIS 2.0 surface observation harvester, implemented by interactive instruments in Testbed 19,
subscribes to surface weather observations published by the WIS 2.0 MQTT broker, processes
them, and posts the results to the ldproxy instance. The implementation of the draft using OGC
API — Features — Part 4: Create, Replace, Update and Delete is used to create new observation
features that are stored in a PostgreSQL/PostGIS database. Two harvesters had been deployed for
Testbed-19: one to gather surface weather observations from Sweden, and the other to do so
for Morocco.

Write access to the ldproxy instance was restricted to authenticated clients. In the testbed,
interactive instruments used Keycloak as an identity provider and the OpenID Connect Client
Credentials Flow to ensure that only harvester instances could create new observations.

NOTE: At the time of writing, Keycloak is not yet deployed. This will be done in the upcoming
weeks.

Once a new observation feature was created, messages were published via a Mosquitto MQTT
Broker. Such messages could be received using any MQTT Client.

The harvesters, ldproxy, Keycloak, the database, and the MQTT broker were deployed in a cloud
environment, using docker containers — see Figure A.18. The deployment was managed using
Portainer.

OPEN GEOSPATIAL CONSORTIUM 23-050 72

https://docs.ogc.org/DRAFTS/20-002.html
https://docs.ogc.org/DRAFTS/20-002.html

Figure A.18 — Deployment of the components

A.5.2.2. WIS 2.0 MQTT broker

The WIS 2.0 MQTT broker is an external component, operated by Meteo France, that publishes
WIS 2.0 weather observation data from multiple countries. In Testbed 19, the broker from
Meteo France was used.

Each WIS 2.0 message is encoded as a GeoJSON feature. The actual weather data is provided in
WMO’s BUFR format. The data typically needs to be downloaded using a link contained in the
GeoJSON feature. Some data providers also encode the data directly using a base64 encoding in
the GeoJSON feature. See WIS 2.0 Notification Message Format for further details about the WIS
2.0 messages.

The WIS 2.0 MQTT broker publishes weather observations on a range of different MQTT topics.
For example, surface-based weather observations are published on topic(s): origin/a/wis2//
/data/core/weather/surface-based-observations/synop. The +-sign thereby serves as a
wildcard. The first is for the country, the second for the center-id. See WIS 2.0 topic hierarchy for
further details about the WIS 2.0 topics.

OPEN GEOSPATIAL CONSORTIUM 23-050 73

https://community.wmo.int/en/wis2-messages
https://community.wmo.int/en/wis2-topic-hierarchy

A.5.2.3. WIS 2.0 surface observation harvester

A.5.2.3.1. Overview

The harvester component is a Java application that subscribes for surface-based weather
observations from a particular country at the Annex A.5.2.2. In Testbed 19, data from Sweden
and Morocco was harvested.

NOTE: Since the WIS 2.0 weather data was used in Testbed 19 as a source for event data, to
demonstrate the PubSub extension for OGC API — Features, the subscription was created with
MQTT Quality of Service (QoS) level 0, meaning that not all messages published by the broker
may be received and processed by the harvester. To avoid message loss, a higher QoS level
would need to be chosen, which is entirely possible. However, it would increase the resource
consumption for both the broker and the harvester, which is why QoS level 0 was used for the
Testbed 19 demonstrator.

A.5.2.3.2. Workflow

Receipt of a new observation triggers the following workflow.

1. The observation (in WIS 2.0 GeoJSON format) is parsed.

2. If the weather data is not encoded in BUFR format (Binary Universal Form for the
Representation of meteorological data), the observation is dismissed. Otherwise,
the BUFR data is decoded or downloaded and temporarily stored locally.

3. The BUFR file is converted to a number of GeoJSON files using the bufr2geojson
package.

4. The resulting GeoJSON files are parsed. If a GeoJSON feature does not have a
2D point geometry, or the data is given with unit “associated units,” the feature
is dropped. Otherwise, the feature is posted to the ldproxy instance. More
specifically, the feature is posted to a particular collection at the OGC API —
Features implementation. A new feature is created in the collection, as specified
by the draft OGC API — Features — Part 4: Create, Replace, Update and Delete —
which is supported by ldproxy.

5. Finally, the temporary BUFR file, as well as the GeoJSON files created by the
bufr2geojson tool, are deleted.

A.5.2.3.3. Build and deployment

The harvester Java application is packaged as a Docker image. The image is based on the
bufr2geojson:latest image (which itself is based on the wmoim/dim_eccodes_baseimage:2.28.0
image). All programs required by the application are thus directly available. When the Docker

OPEN GEOSPATIAL CONSORTIUM 23-050 74

https://github.com/wmo-im/bufr2geojson
https://docs.ogc.org/DRAFTS/20-002.html
https://github.com/wmo-im/bufr2geojson
https://github.com/wmo-im/dim_eccodes_baseimage

image is deployed and run as a Docker container, the topic to subscribe to at the Annex A.5.2.2
can be configured, to be used as a command parameter that is added to the invocation of the
harvester application.

A.5.2.4. ldproxy

A.5.2.4.1. Overview

The Features API implementation was configured to implement selected conformance classes
from the first four parts of OGC API — Features.

• OGC API — Features — Part 1: Core (supported conformance classes: Core, GeoJSON,
HTML and OpenAPI 3.0)

• OGC API — Features — Part 2: Coordinate Reference Systems by Reference (supported
conformance classes: CRS)

• OGC API — Features — Part 3: Filtering Draft (supported conformance classes: Queryables,
Queryables as Query Parameters, Filter, Features Filter)

• OGC API — Features — Part 4: Create, Replace, Update, and Delete Draft (supported
conformance classes: create-replace-delete, features)

• Common Query Language 2 Draft (supported conformance classes: Basic CQL2, Advanced
comparison operators, Case-insensitive comparison, Basic spatial operators, Spatial
operators, Temporal operators, Array operators, Property-property comparison, CQL2-
JSON, CQL2-Text)

A.5.2.4.2. Database

The observations that are created using the Create Feature operations are stored in a
PostgreSQL/PostGIS database. They can be retrieved by clients using implementations of the
OGC API — Features building blocks that provide access to features.

The schema of the observation features is derived from the schema of the features created by
bufr2geojson.

CREATE TABLE wisobservation (

 _id bigserial NOT NULL PRIMARY KEY,
 position geometry(POINT,4326) NOT NULL,
 dataid text NOT NULL,
 reportid text,
 wigos_station_identifier text,
 phenomenontime timestamp with time zone NOT NULL,
 resulttime timestamp with time zone,
 name text,
 value numeric NOT NULL,
 units text NOT NULL,
 description text,

OPEN GEOSPATIAL CONSORTIUM 23-050 75

 index integer,
 fxxyyy text
);

Figure A.19 — SQL DDL of the WIS 2.0 surface observation features

A.5.2.4.3. Publication of feature events

In addition to providing access to the observation features using Web API based on the HTTP
protocol, the API also supported asynchronous, event-driven access using the proposed OGC
API — EDR Part 2: PubSub building blocks for feature resources.

With the definition of an OGC API -EDR: Part 2 PubSub extension, clients will be able
to subscribe to events related to the observation data. In Testbed 19, the events (new
observations) were published by the Features API via an MQTT broker in an efficient, low-
latency manner, with configurable Quality of Service. Without the PubSub extension, clients
would have had to regularly poll the Features API for new observation data. With the PubSub
extension, new observation data was automatically pushed to subscribed clients as soon as such
data becomes available.

The work on a PubSub extension for the OGC API Standards suite began at the time of the
Testbed 19 initiative. The implementation used in this Testbed supported two different ways to
subscribe to observations as follows.

• A single topic to publish all new observations as a GeoJSON feature

• MQTT topic: ogcapi/t19.ldproxy.net/wis20/collections/wisobservation/items

• One topic for each combination of the weather station and the observed property with
just the value of the observation

• MQTT topic: ogcapi/t19.ldproxy.net/wis20/collections/wisobservation/{wigos_
station_identifier}/{observed_property}

AsyncAPI was used to specify the PubSub capabilities so that clients were able to subscribe to
new observations. AsyncAPI is a suite of Open-Source tools to easily build and maintain event-
driven architectures.

{
 "info": {
 "title": "WIS 2.0 Surface-based Weather Observations",
 "description": "Surface-based weather observations for Sweden and Morocco.
The weather observations are published through the Weather Information System
2.0 (WIS 2.0) of the UN World Meteorological Organization (WMO). The data
is harvested from one of the WIS 2.0 Global Brokers and published via an API
implementing the OGC API - Features Standard. This API is developed as part
of
OGC Testbed-19. The API is experimental, a work-in-progress and subject to
change.",
 "version": "1.0.0",
 "contact": {
 "name": "interactive instruments GmbH",
 "email": "mail@interactive-instruments.de"
 },

OPEN GEOSPATIAL CONSORTIUM 23-050 76

 "license": {
 "name": "Unspecified"
 }
 },
 "servers": {
 "t19": {
 "protocol": "secure-mqtt",
 "protocolVersion": "3.1.1",
 "url": "t19.ldproxy.net:8883",
 "bindings": {
 "clientId": "t19.ldproxy.net",
 "cleanSession": true,
 "bindingVersion": "0.1.0"
 }
 }
 },
 "channels": {
 "ogcapi/t19.ldproxy.net/wis20/collections/wisobservation/items": {
 "subscribe": {
 "operationId": "featureChange_wisobservation_items",
 "bindings": {
 "qos": 0,
 "retain": false,
 "bindingVersion": "0.1.0"
 },
 "message": {
 "$ref": "#/components/messages/featureChange_wisobservation"
 }
 },
 "servers": [
 "t19"
]
 },
 "ogcapi/t19.ldproxy.net/wis20/collections/wisobservation/{wigos_station_
identifier}/{observed_property}": {
 "subscribe": {
 "operationId": "featureChange_wisobservation_wigos_station_identifier_
observed_property",
 "bindings": {
 "qos": 0,
 "retain": true,
 "bindingVersion": "0.1.0"
 },
 "parameters": {
 "observed_property": {
 "type": "string"
 },
 "wigos_station_identifier": {
 "type": "string"
 }
 },
 "message": {
 "$ref": "#/components/messages/valueChange_wisobservation_value"
 }
 },
 "servers": [
 "t19"
]
 }
 },
 "components": {
 "messages": {
 "featureChange_wisobservation": {

OPEN GEOSPATIAL CONSORTIUM 23-050 77

 "name": "featureChangeMessage",
 "title": "Feature Change",
 "summary": "Information about a new, updated or deleted feature.",
 "contentType": "application/geo+json",
 "payload": {
 "type": "object"
 }
 },
 "valueChange_wisobservation_value": {
 "name": "valueChangeMessage",
 "title": "Value Change",
 "summary": "Information about a new or updated feature property.",
 "contentType": "plain/text",
 "payload": {
 "type": "number"
 }
 }
 }
 },
 "asyncapi": "2.6.0"
}

Figure A.20 — AsyncAPI definition

Once a new observation feature was created, two messages were published via the D125 MQTT
Broker:

• one message with the new observation feature in GeoJSON; and

• one message with just the numeric value in a topic for the weather station and observed
property.

The GeoJSON message consisted of the observation feature with additional properties as
specified by the draft OGC API Pub Sub extension. The implementation deviated from the draft
OGC API Pub Sub extension in the following ways.

• $id: a UUID for the message (the draft OGC API Pub Sub extension stored this
information in the top-level “id” GeoJSON property, which would have conflicted with the
existing feature identifier).

• $pubTime: the timestamp of the publication (to avoid name clashes, a “$” prefix has been
added the property name specified by the draft OGC API Pub Sub extension).

• $operation: always "create", since observations are only created, never changed or
deleted (to avoid name clashes, a “$” prefix has been added the property name specified
by the draft OGC API Pub Sub extension).

Such messages could be received using MQTT Clients, for example, MQTT Explorer — see
Figure A.21.

OPEN GEOSPATIAL CONSORTIUM 23-050 78

Figure A.21 — Air temperature observations at a Swedish weather station in MQTT Explorer

A.5.2.4.4. Configuration

id: wis20
entityStorageVersion: 2
providerType: FEATURE
providerSubType: SQL
nativeCrs:
 code: 4326
 forceAxisOrder: LON_LAT
nativeTimeZone: Europe/Berlin
connectionInfo:
 connectorType: SLICK
 host: db
 database: wis20
 user: # not shown
 password: # not shown
 dialect: PGIS
 pool:
 initFailTimeout: 10s
queryGeneration:
 computeNumberMatched: false
sourcePathDefaults:
 primaryKey: _id
 sortKey: _id
types:
 wisobservation:
 sourcePath: /wisobservation
 type: OBJECT
 objectType: WisObservation
 label: WIS 2.0 Surface-based Weather Observations
 properties:
 oid:
 sourcePath: _id

OPEN GEOSPATIAL CONSORTIUM 23-050 79

 type: INTEGER
 role: ID
 position:
 sourcePath: position
 type: GEOMETRY
 role: PRIMARY_GEOMETRY
 geometryType: POINT
 constraints:
 required: true
 dataId:
 sourcePath: dataid
 type: STRING
 constraints:
 required: true
 reportId:
 sourcePath: reportid
 type: STRING
 wigos_station_identifier:
 sourcePath: wigos_station_identifier
 type: FEATURE_REF
 valueType: STRING
 refUriTemplate: 'https://oscar.wmo.int/surface/#/search/station/
stationReportDetails/{{value}}'
 phenomenonTime:
 sourcePath: phenomenontime
 type: DATETIME
 role: PRIMARY_INSTANT
 constraints:
 required: true
 resultTime:
 sourcePath: resulttime
 type: DATETIME
 name:
 sourcePath: name
 type: STRING
 value:
 sourcePath: value
 type: FLOAT
 constraints:
 required: true
 units:
 sourcePath: units
 type: STRING
 constraints:
 required: true
 description:
 sourcePath: description
 type: STRING
 index:
 sourcePath: index
 type: INTEGER
 fxxyyy:
 sourcePath: fxxyyy
 type: STRING

Figure A.22 — Feature provider (store/entities/providers/wis20.yml)

id: wis20
entityStorageVersion: 2
label: WIS 2.0 Surface-based Weather Observations

OPEN GEOSPATIAL CONSORTIUM 23-050 80

description: 'Surface-based weather observations for Sweden and Morocco. The
 weather observations are published through the Weather Information System
2.0 (WIS 2.0) of the UN World Meteorological Organization (WMO). The data is
 harvested from one of the WIS 2.0 Global Brokers and published via an API
implementing the OGC API - Features Standard. This API is developed as part
of OGC
 Testbed-19. The API is experimental, a work-in-progress and subject to
change.'
enabled: true
serviceType: OGC_API
metadata:
 keywords:
 - Testbed-19
 - D125
 - weather
 - observation
 contactName: interactive instruments GmbH
 contactEmail: mail@interactive-instruments.de
 creatorName: WMO Members
 creatorUrl: https://public.wmo.int/
 publisherName: interactive instruments GmbH
 publisherUrl: https://www.interactive-instruments.de/
 licenseName: Unspecified # WMO is unclear about the license of the data
 attribution: WMO Members, interactive instruments GmbH
accessControl:
 enabled: false
api:
- buildingBlock: QUERYABLES
 enabled: true
- buildingBlock: SORTING
 enabled: true
- buildingBlock: FILTER
 enabled: true
- buildingBlock: CRUD
 enabled: true
- buildingBlock: PUB_SUB
 enabled: true
 brokers:
 t19:
 host: t19.ldproxy.net
 port: 8883
 publisher: t19.ldproxy.net
 publications:
 items:
 broker: t19
 mqttQos: AT_MOST_ONCE
 '{wigos_station_identifier}/{observed_property}':
 parameters:
 wigos_station_identifier: wigos_station_identifier
 observed_property: name
 property: value
 broker: t19
 mqttQos: AT_MOST_ONCE
 retain: true
collections:
 wisobservation:
 id: wisobservation
 label: wisobservation
 enabled: true
 api:
 - buildingBlock: QUERYABLES
 included:
 - dataId

OPEN GEOSPATIAL CONSORTIUM 23-050 81

 - name
 - reportId
 - value
 - units
 - wigos_station_identifier
 - buildingBlock: SORTING
 included:
 - dataId
 - name
 - reportId
 - value
 - units
 - wigos_station_identifier
 - buildingBlock: FEATURES_HTML
 transformations:
 phenomenonTime:
 - dateFormat: dd.MM.yyyy HH:mm:ss
 resultTime:
 - dateFormat: dd.MM.yyyy HH:mm:ss

Figure A.23 — API building blocks (store/entities/services/wis20.yml)

A.5.2.5. D125 MQTT broker

The D125 MQTT broker is a standard deployment of Mosquitto, a popular MQTT broker
software.

A.6. D127: An instance of OGC API – Tiles serving OS
Open Zoomstack data

A.6.1. Overview

The requirement for this deliverable was:

An instance of OGC API Tiles serving OS Open Zoomstack data.

OS Open Zoomstack is a comprehensive vector basemap showing coverage of Great Britain at
a national level, right down to street-level detail. interactive instruments provided the API using
ldproxy, an implementation of OGC API Tiles.

A.6.2. OS Open Zoomstack API

A.6.2.1. Overview

Link to the API Landing Page

OPEN GEOSPATIAL CONSORTIUM 23-050 82

https://github.com/interactive-instruments/ldproxy#readme
https://demo.ldproxy.net/zoomstack

This is an existing API endpoint that interactive instruments maintains as one of the ldproxy
demonstration APIs. The OS Open Zoomstack dataset is provided by Ordnance Survey as
GeoPackage (features) and MBTiles (vector tiles).

This API endpoint also provides resources from OGC API — Features and the draft OGC API —
Styles Standards.

A.6.2.2. Dataset

The dataset is available from the Ordnance Survey website.

In addition, stylesheets and associated resources (i.e., fonts and symbols) are available on
GitHub.

A.6.2.3. ldproxy Configuration

To deploy one or more APIs with ldproxy, configuration files for the deployment are needed. The
configuration is typically maintained in a git repository.

For the demo.ldproxy.net deployment, which includes the OS Open Zoomstack API, the
configuration is available at https://github.com/ldproxy/demo.

Since this is a demonstration deployment, the repository also contains additional documentation
about the different APIs.

A.6.2.4. Deployment

ldproxy is only distributed as a Docker image. The configuration repository also includes a
Docker Compose file to simplify the process of starting a local deployment.

The image below is a screenshot of a web map using the OS Open Zoomstack vector tiles and
the “Road” style as served by the API.

OPEN GEOSPATIAL CONSORTIUM 23-050 83

https://osdatahub.os.uk/downloads/open/OpenZoomstack
https://github.com/OrdnanceSurvey/OS-Open-Zoomstack-Stylesheets
https://github.com/ldproxy/demo
https://demo.ldproxy.net/zoomstack/styles/Road?f=html#7.84/51.617/-1.323
https://demo.ldproxy.net/zoomstack/styles/Road?f=html#7.84/51.617/-1.323

Figure A.24 — MapLibre web map of the OS Open Zoomstack vector tiles with
the "Road" style. Contains OS data © Crown copyright and database right 2023.

A.7. Component D128: An instance of OGC API –
Records

A.7.1. Purpose

This component provides metadata about all of the software and data components available in
the (prototype) system.

RM-ODP defines five viewpoints (on a system) that yield a specification of the whole system
related to a particular set of concerns. The five viewpoints defined by RM-ODP have been
chosen to be both simple and complete, covering all the domains of architectural design.

In the Agile Reference Architecture (ARA) approach, the assumption is that a system is built from
reusable ARA Blocks, or components. Depending on the RM-ODP viewpoint chosen, they are
described in the catalog from a different perspective.

• Information Viewpoint: ARA Blocks are described as Datasets or Dataset series metadata
records.

OPEN GEOSPATIAL CONSORTIUM 23-050 84

https://rm-odp-new.lcc.uma.es/

• Computational Viewpoint: ARA Blocks are described as Service metadata records offering
specific interfaces.

The two viewpoints describing an ARA Block are not independent. Information viewpoint and
computational viewpoint metadata related to the same ARA Block can be modeled as “coupled
resources” and/or related through one of more “offerings” as defined in the OWS Context
Conceptual Model OGC 12-080r2 and corresponding encodings, e.g., OGC 14-055r2.

Table A.2 — Resources — ARA Blocks

TYPE IDENTIFIER DESCRIPTION OFFERINGS COUPLED RESOURCES

Dataset OSM OSM Dataset, Data Container
OGC API-Features, OGC
API-Maps, Docker data
container

-

Dataset RTD Real-time Dataset OGC API-Features -

Dataset DD SatCen Data Dictionary
OGC API-Features,
Docker data container

-

Dataset ARA TB19 ARA Blocks OGC API-Records -

Service D123 OGC API-Processes instance OGC API-Processes

Service D124
OGC API-Features instance
serving OSM data

OGC API-Features OSM

Service D125
OGC API-Features instance
serving real-time data

OGC API-Features RTD

Service D128
OGC API-Records instance serving
ARA Blocks metadata

OGC API-Records ARA

A.7.2. Embedded metadata

While ARA Blocks are described with metadata records in the API-Records catalog server, it is
proposed that the containerized ARA blocks contain embedded metadata as well.

Metadata can be included in containers and pods as described in D. Meyer et al., [15] and
[16]. Pods are the smallest deployable units of computing that you can create and manage
in Kubernetes. The embedded metadata is still to be defined (e.g., in YAML format which is
equivalent to JSON), but expected to cover additional RM-ODP viewpoint information, in
particular platform and distribution-related information.

The embedded metadata (YAML file) and catalog metadata records are proposed to contain
“trust” and “provenance” information.

OPEN GEOSPATIAL CONSORTIUM 23-050 85

https://portal.ogc.org/files/?artifact_id=55182
https://docs.ogc.org/is/14-055r2/14-055r2.html

A.7.3. Metadata response formats

Some metadata formats are more suitable than others for describing coupled-resources,
offerings, and provenance information.

A.7.3.1. Coupled resources

In the ISO 19139 Geographic information XML schema implementation Part 1: Encoding rules
Standard and other metadata formats, service metadata can refer to the target datasets of the
described service by reference, i.e., through a URL that points to the metadata record of the data
on which the service operates.

<gmd:identificationInfo>
 <srv:SV_ServiceIdentification>
 <srv:operatesOn xlink:href="https://emc.spacebel.be/collections/tb19-osm?
httpAccept=application%2Fvnd.iso.19139%2Bxml#tb19-osm"/>
 </srv:SV_ServiceIdentification>
</gmd:identificationInfo>

Figure A.25 — ISO19139 coupled resource

The dcat:servesDataset and dcat:service allow a similar coupling in GeoDCAT-AP
metadata.

{
 "@type": "dcat:DataService",
 "dct:type": "http://inspire.ec.europa.eu/metadata-codelist/ResourceType/
service",
 "dct:identifier": "tb19-d124",
 "dcat:servesDataset": [
 {
 "@type": "dcat:Dataset",
 "dct:identifier": "tb19-osm",
 "@id": "https://emc.spacebel.be/collections/series/items/tb19-osm"
 }
],
}

Figure A.26 — GeoDCAT-AP coupled resource

A.7.3.2. Offerings

The offering concept was defined in the OGC OWS Context Conceptual Model Standard [OGC
12-080r2] and OGC OWS Context GeoJSON Encoding Standard [OGC 14-055r2]. In the OGC
Testbed-15: Catalog and Discovery Engineering Report OGC 19-020r1 the set of available
offering identifiers was proposed to be extended with OGC “offerings” for OGC API interfaces
and (Docker) containers.

{
 "type": "Offering",
 "code": "http://www.opengis.net/spec/eopad-geojson/1.0/req/docker/
image",

OPEN GEOSPATIAL CONSORTIUM 23-050 86

https://docs.ogc.org/per/19-020r1.html

 "contents": [
 {
 "type": "text/plain",
 "content": "docker.tb19.org/data/osm:latest"
 }
]
}

Figure A.27 — Docker container offering

The same specification provides an example of an offering for an implementation of OGC API —
Processes.

{
 "type": "Offering",
 "code": "http://www.opengis.net/spec/eopad-geojson/1.0/req/ogc-api-
processes",
 "operations": [
 {
 "code": "LandingPage",
 "method": "GET",
 "href": "http://172.17.20.10:30080/ogcapi/",
 "type": "application/json"
 },
 {
 "code": "Service",
 "method": "GET",
 "href": "http://172.17.20.10:30080/ogcapi/api/",
 "type": "application/openapi+json;version=3.0"
 },
 {
 "code": "Conformance",
 "method": "GET",
 "href": "http://172.17.20.10:30080/ogcapi/conformance/
",
 "type": "application/json"
 },
 {
 "code": "Processes",
 "method": "GET",
 "href": "http://172.17.20.10:30080/ogcapi/processes/",
 "type": "application/json"
 },
 {
 "code": "DescribeProcess",
 "method": "GET",
 "href": "http://172.17.20.10:30080/ogcapi/processes/
reproject",
 "type": "application/json",
 "result": {
 "type": "application/json",
 "content": {
 "process": {
 "id": "reproject",
 "title": "...",
 ...
 }
 }
 }
 }
]

OPEN GEOSPATIAL CONSORTIUM 23-050 87

}

Figure A.28 — OGC API-Processes offering (GeoJSON)

In GeoDCAT-AP (JSON-LD) the same offerings are encoded as dcat:endpointDescription as
defined in the EO Collection GeoJSON(-LD) Encoding Standard [OGC17-084r1].

"dcat:endpointDescription": [{
 "@type": "owc:Offering",
 "owc:code": {"@id": "http://www.opengis.net/spec/eopad-geojson/1.0/req/ogc-
api-features"},
 "owc:operations": [
 {
 "owc:href": "https://t19.ldproxy.net/wis20?f=json",
 "@type": "owc:Operation",
 "owc:type": "application/json",
 "owc:code": "LandingPage",
 "owc:method": "GET"
 },
 {
 "owc:href": "https://t19.ldproxy.net/wis20/api?f=json",
 "@type": "owc:Operation",
 "owc:type": "application/openapi+json;version=3.0",
 "owc:code": "Service",
 "owc:method": "GET"
 },
 {
 "owc:href": "https://t19.ldproxy.net/wis20/conformance",
 "@type": "owc:Operation",
 "owc:type": "application/json",
 "owc:code": "Conformance",
 "owc:method": "GET"
 }
]
 }],

Figure A.29 — OGC API-Features offering (GeoDCAT-AP)

A.7.3.3. Provenance

Different levels of provenance information details can be included in ISO19139, DCAT v2,
GeoDCAT-AP, W3C PROV or other metadata encodings.

• https://semiceu.github.io/GeoDCAT-AP/drafts/latest/#properties-for-provenance-
statement

• https://www.w3.org/TR/vocab-dcat-2/#examples-dataset-provenance

• https://www.w3.org/TR/prov-overview/

• https://www.w3.org/TR/vc-data-model-2.0

{
 "@type": "dcat:Dataset",
 "@id": "https://emc.spacebel.be/collections/series/items/tb19-osm",
 "dct:type": "http://inspire.ec.europa.eu/metadata-codelist/ResourceType/
series",
 "dct:identifier": "tb19-osm",

OPEN GEOSPATIAL CONSORTIUM 23-050 88

https://semiceu.github.io/GeoDCAT-AP/drafts/latest/#properties-for-provenance-statement
https://semiceu.github.io/GeoDCAT-AP/drafts/latest/#properties-for-provenance-statement
https://www.w3.org/TR/vocab-dcat-2/#examples-dataset-provenance
https://www.w3.org/TR/prov-overview/
https://www.w3.org/TR/vc-data-model-2.0

 "dct:provenance": [{
 "rdfs:label": "The dataset was provided by the US National Geospatial
Intelligence Agency (NGA) for development, testing and demonstrations in
initiatives of the Open Geospatial Consortium (OGC). For any reuse of the
data, please contact NGA.",
 "@type": "dct:ProvenanceStatement"
 }]
}

Figure A.30 — GeoDCAT-AP Provenance Statement

<gmd:dataQualityInfo>
 <gmd:DQ_DataQuality>
 <gmd:scope>
 <gmd:DQ_Scope>
 <gmd:level>
 <gmd:MD_ScopeCode codeList="http://standards.iso.org/iso/19139/resources/
gmxCodelists.xml#MD_ScopeCode" codeListValue="series"/>
 </gmd:level>
 </gmd:DQ_Scope>
 </gmd:scope>
 <gmd:lineage>
 <gmd:LI_Lineage>
 <gmd:statement>
 <gco:CharacterString>
 The dataset was provided by the US National Geospatial
Intelligence Agency (NGA) for development, testing and demonstrations in
initiatives of the Open Geospatial Consortium (OGC). For any reuse of the
data, please contact NGA.
 </gco:CharacterString>
 </gmd:statement>
 </gmd:LI_Lineage>
 </gmd:lineage>
 </gmd:DQ_DataQuality>
 </gmd:dataQualityInfo>
</gmd:dataQualityInfo>

Figure A.31 — ISO19139 Provenance Statement

Alternatively, the provenance information can be described using the W3C PROV vocabularies
and refer to an external description.

{
 "@type": "dcat:Dataset",
 "@id": "https://emc.spacebel.be/collections/series/items/tb19-osm",
 "dct:type": "http://inspire.ec.europa.eu/metadata-codelist/ResourceType/
series",
 "dct:identifier": "tb19-osm",
 "prov:wasGeneratedBy": [
 {
 "@id": "https://server.org/provenance-info.jsonld"
 }
]
}

Figure A.32 — GeoDCAT-AP External Provenance Information

In a decentralized environment, provenance information may be encoded as verifiable claims. A
JSON-LD/RDF encoding is available in the Verifiable Credentials Data Model v2.0 from W3C.

OPEN GEOSPATIAL CONSORTIUM 23-050 89

https://www.w3.org/TR/vc-data-model-2.0/#claims
https://www.w3.org/TR/vc-data-model-2.0/#json-ld

A.7.3.4. Integrity

The integrity and authenticity (trust) might be supported by using the DCS (Data Centric
Security) approach proposed in the OGC Testbed-18: Secure Asynchronous Catalog Engineering
Report OGC 22-018. For example, JWT tokens or JWS or JWS/CT signatures computed over
data or container image bytes and embedded in corresponding (dataset/component) metadata
records and/or description files. The JWS/CT (Clear Text) approach allows adding the signature
while preserving the readability.

In OGC 22-018, the .well-known/jwks.json URL on a server was used to discover public keys.
When decentralized identifiers (DID) are used (see below), the key information can be obtained
from the DID document instead.

For JSON-LD (RDF) encodings, the spdx:checksum property may be used to associate a
checksum with a digital object. See also https://github.com/ESIPFed/science-on-schema.org/
blob/master/guides/Dataset.md#checksum.

A.7.4. Implementation

The OGC API — Records implementation supports obtaining search results and metadata
records in various representations using the HTTP query parameter httpAccept or using the
HTTP header parameter Accept (content negotiation). Supported metadata formats include the
following.

• OGC 19-020r1, OGC 17-084r1

• ISO19139

• GeoDCAT-AP in JSON-LD, RDF/XML or Turtle encoding.

Figure A.33 — Supported metadata formats

The implementation supports CQL2 Text and Basic CQL.

OPEN GEOSPATIAL CONSORTIUM 23-050 90

https://spdx.org/rdf/terms/#checksum
https://github.com/ESIPFed/science-on-schema.org/blob/master/guides/Dataset.md#checksum
https://github.com/ESIPFed/science-on-schema.org/blob/master/guides/Dataset.md#checksum

Metadata Record Examples:

• GeoJSON

• /collections/services/items/tb19-d123 (API-Processes)

• /collections/services/items/tb19-d124 (API-Features)

• /collections/services/items/tb19-d125 (API-Features)

• /collections/series/items/tb19-osm (Dataset Series)

• /collections/series/items/tb19-rtd (Dataset Series)

• ISO19139

• /collections/services/items/tb19-d123?httpAccept=application/vnd.iso.19139%2Bxml

• /collections/services/items/tb19-d124?httpAccept=application/vnd.iso.19139%2Bxml

• /collections/services/items/tb19-d125?httpAccept=application/vnd.iso.19139%2Bxml

• /collections/series/items/tb19-osm?httpAccept=application/vnd.iso.19139%2Bxml

• /collections/series/items/tb19-rtd?httpAccept=application/vnd.iso.19139%2Bxml

• GeoDCAT-AP (JSON-LD)

• /collections/services/items/tb19-d123?httpAccept=application/ld
%2Bjson;profile=http://data.europa.eu/930/

• /collections/services/items/tb19-d124?httpAccept=application/ld
%2Bjson;profile=http://data.europa.eu/930/

• /collections/services/items/tb19-d125?httpAccept=application/ld
%2Bjson;profile=http://data.europa.eu/930/

• /collections/series/items/tb19-osm?httpAccept=application/ld%2Bjson;profile=http://
data.europa.eu/930/

• /collections/series/items/tb19-rtd?httpAccept=application/ld%2Bjson;profile=http://
data.europa.eu/930/

• GeoDCAT-AP (Turtle)

• /collections/services/items/tb19-d123?httpAccept=text/turtle;profile=http://
data.europa.eu/930/

• /collections/services/items/tb19-d124?httpAccept=text/turtle;profile=http://
data.europa.eu/930/

OPEN GEOSPATIAL CONSORTIUM 23-050 91

https://emc.spacebel.be/collections/services/items/tb19-d123
https://emc.spacebel.be/collections/services/items/tb19-d124
https://emc.spacebel.be/collections/services/items/tb19-d125
https://emc.spacebel.be/collections/series/items/tb19-osm
https://emc.spacebel.be/collections/series/items/tb19-rtd
https://emc.spacebel.be/collections/services/items/tb19-d123?httpAccept=application/vnd.iso.19139%2Bxml
https://emc.spacebel.be/collections/services/items/tb19-d124?httpAccept=application/vnd.iso.19139%2Bxml
https://emc.spacebel.be/collections/services/items/tb19-d125?httpAccept=application/vnd.iso.19139%2Bxml
https://emc.spacebel.be/collections/series/items/tb19-osm?httpAccept=application/vnd.iso.19139%2Bxml
https://emc.spacebel.be/collections/series/items/tb19-rtd?httpAccept=application/vnd.iso.19139%2Bxml
https://emc.spacebel.be/collections/services/items/tb19-d123?httpAccept=application/ld%2Bjson;profile=http://data.europa.eu/930/
https://emc.spacebel.be/collections/services/items/tb19-d123?httpAccept=application/ld%2Bjson;profile=http://data.europa.eu/930/
https://emc.spacebel.be/collections/services/items/tb19-d124?httpAccept=application/ld%2Bjson;profile=http://data.europa.eu/930/
https://emc.spacebel.be/collections/services/items/tb19-d124?httpAccept=application/ld%2Bjson;profile=http://data.europa.eu/930/
https://emc.spacebel.be/collections/services/items/tb19-d125?httpAccept=application/ld%2Bjson;profile=http://data.europa.eu/930/
https://emc.spacebel.be/collections/services/items/tb19-d125?httpAccept=application/ld%2Bjson;profile=http://data.europa.eu/930/
https://emc.spacebel.be/collections/series/items/tb19-osm?httpAccept=application/ld%2Bjson;profile=http://data.europa.eu/930/
https://emc.spacebel.be/collections/series/items/tb19-osm?httpAccept=application/ld%2Bjson;profile=http://data.europa.eu/930/
https://emc.spacebel.be/collections/series/items/tb19-rtd?httpAccept=application/ld%2Bjson;profile=http://data.europa.eu/930/
https://emc.spacebel.be/collections/series/items/tb19-rtd?httpAccept=application/ld%2Bjson;profile=http://data.europa.eu/930/
https://emc.spacebel.be/collections/services/items/tb19-d123?httpAccept=text/turtle;profile=http://data.europa.eu/930/
https://emc.spacebel.be/collections/services/items/tb19-d123?httpAccept=text/turtle;profile=http://data.europa.eu/930/
https://emc.spacebel.be/collections/services/items/tb19-d124?httpAccept=text/turtle;profile=http://data.europa.eu/930/
https://emc.spacebel.be/collections/services/items/tb19-d124?httpAccept=text/turtle;profile=http://data.europa.eu/930/

• /collections/services/items/tb19-d125?httpAccept=text/turtle;profile=http://
data.europa.eu/930/

• /collections/series/items/tb19-osm?httpAccept=text/turtle;profile=http://
data.europa.eu/930/

• /collections/series/items/tb19-rtd?httpAccept=text/turtle;profile=http://
data.europa.eu/930/

Search Examples:

• /collections/services/items?q=Testbed-19

• /collections/services/items?externalId=tb19-d123

• /collections/services/items?filter=organisationName%20=%20%27interactive
%20instruments%20GmbH%27

The open-source software StacBrowser can be used to access the catalog server. The
below example shows the search result of a search request combining free-text (q) and
organisationName with a CQL2 filter.

Figure A.34 — Accessing the API-Records catalog with StacBrowser Client

OPEN GEOSPATIAL CONSORTIUM 23-050 92

https://emc.spacebel.be/collections/services/items/tb19-d125?httpAccept=text/turtle;profile=http://data.europa.eu/930/
https://emc.spacebel.be/collections/services/items/tb19-d125?httpAccept=text/turtle;profile=http://data.europa.eu/930/
https://emc.spacebel.be/collections/series/items/tb19-osm?httpAccept=text/turtle;profile=http://data.europa.eu/930/
https://emc.spacebel.be/collections/series/items/tb19-osm?httpAccept=text/turtle;profile=http://data.europa.eu/930/
https://emc.spacebel.be/collections/series/items/tb19-rtd?httpAccept=text/turtle;profile=http://data.europa.eu/930/
https://emc.spacebel.be/collections/series/items/tb19-rtd?httpAccept=text/turtle;profile=http://data.europa.eu/930/
https://emc.spacebel.be/collections/services/items?q=Testbed-19
https://emc.spacebel.be/collections/services/items?externalId=tb19-d123
https://emc.spacebel.be/collections/services/items?filter=organisationName%20=%20%27interactive%20instruments%20GmbH%27
https://emc.spacebel.be/collections/services/items?filter=organisationName%20=%20%27interactive%20instruments%20GmbH%27
https://github.com/radiantearth/stac-browser

A.7.5. OGC Building Blocks

The GeoDCAT-AP responses of the API-Records implementation can be browsed as Linked
Data, e.g., using the LODView open-source software. They are integrated with the knowledge
graph behind OGC RAINBOW as shown below.

For example, https://emc.spacebel.be/lodview/ext/?uri=https%3A%2F%2Femc.spacebel.be
%2Fcollections%2Fservices%2Fitems%2Ftb19-d124 accesses the /collections/services/items/
tb19-d124 response as Linked Data.

Figure A.35 — Accessing D124 metadata as Linked Data (GeoDCAT-AP)

The GeoJSON, JSON-LD, RDF/XML or Turtle representations of the metadata records reference
the OGC API Standard they implement as shown below.

"categories": [
 {
 "scheme": "https://inspire.ec.europa.eu/metadata-codelist/
ProtocolValue",
 "term": "http://www.opengis.net/def/docs/18-062r2",
 "label": "OGC API-Processes"
 }

OPEN GEOSPATIAL CONSORTIUM 23-050 93

https://github.com/LodLive/LodView
http://defs.opengis.net/vocprez/
https://emc.spacebel.be/lodview/ext/?uri=https%3A%2F%2Femc.spacebel.be%2Fcollections%2Fservices%2Fitems%2Ftb19-d124
https://emc.spacebel.be/lodview/ext/?uri=https%3A%2F%2Femc.spacebel.be%2Fcollections%2Fservices%2Fitems%2Ftb19-d124

]

Figure A.36 — Reference to API description in RAINBOW (GeoJSON)

"dcat:theme": [
 {
 "skos:prefLabel": "OGC API-Features",
 "@type": "skos:Concept",
 "@id": "http://www.opengis.net/def/docs/17-069r3",
 "skos:inScheme": "https://inspire.ec.europa.eu/metadata-codelist/
ProtocolValue"
 }
]

Figure A.37 — Reference to API description in RAINBOW (JSON-LD)

Figure A.38 — Description OGC API - Features - Part 1 in RAINBOW

Following the corresponding reference in the LODView client allows navigating to the
corresponding definition in the OGC RAINBOW. OGC RAINBOW publishes a range of resources
managed by OGC and identified by unique stable web addresses (IRIs or URIs). The following
RAINBOW elements are relevant in the metadata records.

OPEN GEOSPATIAL CONSORTIUM 23-050 94

• http://defs.opengis.net/vocprez/object?uri=http://www.opengis.net/def/docs/18-062r2

• http://defs.opengis.net/vocprez/object?uri=http://www.opengis.net/def/docs/17-069r3

Figure A.39 — Accessing Building Block metadata as Linked Data (RAINBOW)

In a similar way, any D128 API Records search response can be obtained in RDF format (linked
data) via the LODView Client as the catalog supports JSON-LD, RDF/XML, and Turtle encodings
of search responses in addition to GeoJSON and HTML.

• https://emc.spacebel.be/lodview/ext/?uri=https%3A%2F%2Femc.spacebel.be
%2Fcollections%2Fservices%2Fitems%3Fq%3DTestbed-19

OPEN GEOSPATIAL CONSORTIUM 23-050 95

http://defs.opengis.net/vocprez/object?uri=http://www.opengis.net/def/docs/18-062r2
http://defs.opengis.net/vocprez/object?uri=http://www.opengis.net/def/docs/17-069r3
https://emc.spacebel.be/lodview/ext/?uri=https%3A%2F%2Femc.spacebel.be%2Fcollections%2Fservices%2Fitems%3Fq%3DTestbed-19
https://emc.spacebel.be/lodview/ext/?uri=https%3A%2F%2Femc.spacebel.be%2Fcollections%2Fservices%2Fitems%3Fq%3DTestbed-19

Figure A.40 — Accessing API Records search responses as Linked Data (GeoDCAT-AP)

A.7.6. Decentralized identifiers

W3C Decentralized Identifiers (DID) can be used to find binding information for services
without the need to retrieve it from a centralized catalog. The identifiers also support the
dereferencing of the service requests, increasing location independence, and data portability
that can be combined with cryptographical verification.

For example did:web:emc.spacebel.be is a DID identifier referring to the organization
‘Spacebel’. The DID resolves to a DID document published at https://emc.spacebel.be/.well-
known/did.json as can be checked with https://dev.uniresolver.io/1.0/identifiers/did:web:emc.
spacebel.be.

{
 "@context": [
 "https://www.w3.org/ns/did/v1",
 "https://w3id.org/security/suites/jws-2020/v1"
],
 "id": "did:web:emc.spacebel.be",
 "verificationMethod": [
 {
 "id": "did:web:emc.spacebel.be#owner",
 "type": "JsonWebKey2020",
 "controller": "did:web:emc.spacebel.be",
 "publicKeyJwk": {
 "kty": "EC",
 "crv": "secp256k1",
 "x": "MCta899r_q7QRV38d2am7jfzlNf8L2sJnoCUH6oGrw0",

OPEN GEOSPATIAL CONSORTIUM 23-050 96

https://emc.spacebel.be/.well-known/did.json
https://emc.spacebel.be/.well-known/did.json
https://dev.uniresolver.io/1.0/identifiers/did:web:emc.spacebel.be
https://dev.uniresolver.io/1.0/identifiers/did:web:emc.spacebel.be

 "y": "Rv18mXxaJ7T-FjCXr2d8YFdvsm7gNArcoo8VjtRxmfg"
 }
 }
],
 "authentication": [
 "did:web:emc.spacebel.be#owner"
],
 "assertionMethod": [
 "did:web:emc.spacebel.be#owner"
],
 "service": [
 {
 "id": "#d128",
 "type": "http://www.opengis.net/def/docs/20-004",
 "serviceEndpoint": "https://emc.spacebel.be/"
 },
 {
 "id": "#d123",
 "type": "http://www.opengis.net/def/docs/18-062r2",
 "serviceEndpoint": "http://172.17.20.10:30080/ogcapi/"
 }
]
}

Figure A.41 — DID document with service information

The OGC Testbed-19 services published by Spacebel are identified in the above DID document.
A DID resolver can access the published services via the following DID URLs.

• did:web:emc.spacebel.be#d123 or did:web:emc.spacebel.be?service=d123

• did:web:emc.spacebel.be#d128 or did:web:emc.spacebel.be?service=d128

The image below depicts the output of the DIF Universal Resolver for the above Spacebel DID.

OPEN GEOSPATIAL CONSORTIUM 23-050 97

https://dev.uniresolver.io/

Figure A.42 — DIF Universal Resolver

In the above implementation, the D123 service metadata record refers back to its DID identifier
as shown below.

"links": [
 {
 "rel": "describes",
 "href": "did:web:emc.spacebel.be#d123",
 "type": "application/did+ld+json",
 "title": "DID Document"
 }
]

Figure A.43 — Catalog record referring to resource DID identifier/document.

Some more examples of dereferencing DID URLs with another universal resolver:

• https://api.godiddy.com/0.1.0/universal-resolver/identifiers/did:web:emc.spacebel.be

• https://api.godiddy.com/0.1.0/universal-resolver/identifiers/did:web:emc.spacebel.be?
service=d128&relativeRef=collections/services/items/tb19-d125

• https://api.godiddy.com/0.1.0/universal-resolver/identifiers/did:web:emc.spacebel.be?
service=d128&relativeRef=api

OPEN GEOSPATIAL CONSORTIUM 23-050 98

https://api.godiddy.com/0.1.0/universal-resolver/identifiers/did:web:emc.spacebel.be
https://api.godiddy.com/0.1.0/universal-resolver/identifiers/did:web:emc.spacebel.be?service=d128&relativeRef=collections/services/items/tb19-d125
https://api.godiddy.com/0.1.0/universal-resolver/identifiers/did:web:emc.spacebel.be?service=d128&relativeRef=collections/services/items/tb19-d125
https://api.godiddy.com/0.1.0/universal-resolver/identifiers/did:web:emc.spacebel.be?service=d128&relativeRef=api
https://api.godiddy.com/0.1.0/universal-resolver/identifiers/did:web:emc.spacebel.be?service=d128&relativeRef=api

B

ANNEX B (INFORMATIVE)
REVISION HISTORY

OPEN GEOSPATIAL CONSORTIUM 23-050 99

B ANNEX B
(INFORMATIVE)
REVISION HISTORY

DATE RELEASE PERSON
PRIMARY CLAUSES
MODIFIED

DESCRIPTION

2023-12-
06

.9
Lucio
Colaiacomo

all Initial version

2024-01-
16

.9 Carl Reed all
Apply edits from detailed
review

OPEN GEOSPATIAL CONSORTIUM 23-050 100

BIBLIOGRAPHY

OPEN GEOSPATIAL CONSORTIUM 23-050 101

BIBLIOGRAPHY

[1] Yves Coene, Christophe Noel: OGC 22-018, Testbed-18: Secure Asynchronous Catalog
Engineering Report. Open Geospatial Consortium (2023). http://www.opengis.net/doc/
PER/T18-D007.

[2] Clemens Portele, Panagiotis (Peter) A. Vretanos, Charles Heazel: OGC 17-069r4, OGC
API — Features — Part 1: Core corrigendum. Open Geospatial Consortium (2022). http://
www.opengis.net/doc/IS/ogcapi-features-1/1.0.1.

[3] George Percivall: OGC 03-040, OGC Reference Model. Open Geospatial Consortium
(2003).

[4] George Percivall: OGC 08-062r7, OGC Reference Model. Open Geospatial Consortium
(2011). http://www.opengis.net/doc/orm/2.1.

[5] Yves Coene: OGC 19-020r1, OGC Testbed-15: Catalogue and Discovery Engineering Report.
Open Geospatial Consortium (2019). http://www.opengis.net/doc/PER/t15-D010.

[6] Scott Simmons: OGC 05-020r29, Technical Committee Policies and Procedures, version
29.0, https://docs.ogc.org/pol/05-020r29/05-020r29.html

[7] Panagiotis (Peter) A. Vretanos, Tom Kralidis, Charles Heazel: OGC 20-004, OGC API –
Records – Part 1: Core, 2019 https://docs.ogc.org/DRAFTS/20-004.html

[8] SEED Standard Definition — https://ngageoint.github.io/seed/seed.html.

[9] W3C: Decentralized Identifiers (DIDs) v1.0, Core architecture, data model, and
representations, W3C Recommendation 19 July 2022, Version 1.0 https://www.w3.org/
TR/did-core

[10] DGIWG : DGIWG 114, DGIWG Metadata Foundation, 12 July 2017, Edition 2.0, https://
portal.dgiwg.org/files/67565

[11] SEMIC: GeoDCAT-AP — Version 2.0.0, A geospatial extension for the DCAT application
profile for data portals in Europe, Version 2.0 https://semiceu.github.io/GeoDCAT-AP/
releases/2.0.0/

[12] ITU-T: X.901-1997, Information technology – Open distributed processing – Reference
Model: Overview, https://rm-odp-new.lcc.uma.es/files/X.901-1997.pdf

[13] DGIWG : DGIWG 933, DGIWG Geospatial Reference Architecture (DGRA), 18 May
2023, Edition 1.0, https://portal.dgiwg.org/files/?artifact_id=73392

[14] ISO: ISO 19139:2007, Geographic Information – Metadata XML, http://www.iso.org/
iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=32557

[15] Docker object labels — https://docs.docker.com/config/labels-custom-metadata/.

OPEN GEOSPATIAL CONSORTIUM 23-050 102

http://www.opengis.net/doc/PER/T18-D007
http://www.opengis.net/doc/PER/T18-D007
http://www.opengis.net/doc/IS/ogcapi-features-1/1.0.1
http://www.opengis.net/doc/IS/ogcapi-features-1/1.0.1
http://www.opengis.net/doc/orm/2.1
http://www.opengis.net/doc/PER/t15-D010
https://docs.ogc.org/pol/05-020r29/05-020r29.html
https://docs.ogc.org/DRAFTS/20-004.html
https://ngageoint.github.io/seed/seed.html
https://www.w3.org/TR/did-core
https://www.w3.org/TR/did-core
https://portal.dgiwg.org/files/67565
https://portal.dgiwg.org/files/67565
https://semiceu.github.io/GeoDCAT-AP/releases/2.0.0/
https://semiceu.github.io/GeoDCAT-AP/releases/2.0.0/
https://rm-odp-new.lcc.uma.es/files/X.901-1997.pdf
https://portal.dgiwg.org/files/?artifact_id=73392
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=32557
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=32557
https://docs.docker.com/config/labels-custom-metadata/

[16] Kubernetes Labels and Selectors — https://kubernetes.io/docs/concepts/overview/
working-with-objects/labels/.

[17] Decentralized Identity Foundation: Decentralized Web Node — https://identity.
foundation/decentralized-web-node/spec/.

[18] Indy: Decentralized Key Management — https://hyperledger-indy.readthedocs.io/
projects/sdk/en/latest/docs/design/005-dkms/README.html.

[19] Anna Burzykowska (ESA), Michele Iapaolo (Randstad), Priit Anton (Guardtime), Andreas
Sisask (Guardtime), EO Data Provenance with KSI Blockchain, February 2020. — https://
eo4society.esa.int/wp-content/uploads/2020/03/EO-data-provenance-with-KSI-
blockchain-Feb-2020.pdf.

[20] The Open Group Architecture Framework, https://pubs.opengroup.org/architecture/
togaf8-doc/arch/chap32.html#tag_33_03

OPEN GEOSPATIAL CONSORTIUM 23-050 103

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://identity.foundation/decentralized-web-node/spec/
https://identity.foundation/decentralized-web-node/spec/
https://hyperledger-indy.readthedocs.io/projects/sdk/en/latest/docs/design/005-dkms/README.html
https://hyperledger-indy.readthedocs.io/projects/sdk/en/latest/docs/design/005-dkms/README.html
https://eo4society.esa.int/wp-content/uploads/2020/03/EO-data-provenance-with-KSI-blockchain-Feb-2020.pdf
https://eo4society.esa.int/wp-content/uploads/2020/03/EO-data-provenance-with-KSI-blockchain-Feb-2020.pdf
https://eo4society.esa.int/wp-content/uploads/2020/03/EO-data-provenance-with-KSI-blockchain-Feb-2020.pdf
https://pubs.opengroup.org/architecture/togaf8-doc/arch/chap32.html#tag_33_03
https://pubs.opengroup.org/architecture/togaf8-doc/arch/chap32.html#tag_33_03

	I. Executive Summary
	II. Keywords
	III. Contributors
	1. Introduction
	1.1. Problem statement
	1.2. Possible path towards Next Generation Architecture

	2. Terms, definitions and abbreviated terms
	2.1. Terms and definitions
	2.2. Abbreviated terms

	3. Reference Architecture
	3.1. Actual status
	3.2. Examples of architectures in use
	3.3. Building blocks
	3.3.1. Official OGC definition of a Building Block
	3.3.2. Generic characteristics of a building block

	3.4. Architecture and Solution Building Blocks (TOGAF definition)
	3.4.1. Architecture Building Blocks
	3.4.2. Solution Building Blocks

	3.5. Comparison based on the above elements

	4. Next Generation Architecture
	4.1. Federated Agile Collaborating Trusted Systems (FACTS)
	4.2. Requirements for next generation architecture
	4.3. Building block definition — further considerations
	4.4. Interaction space
	4.5. Way ahead
	4.5.1. Possible implementation steps

	4.6. Artificial Intelligence
	4.7. Use cases

	5. Generation After Next
	5.1. Open issues
	5.2. Future work
	5.2.1. Data Centric Security
	5.2.2. Discovery of Decentralized Applications

	Annex A (informative) Component Deliverables
	A.1. Component D121: An integrated knowledge base linking machine-readable specifications required to implement the target DDIL Use Case
	A.1.1. Presentation of example building blocks in an integrated knowledge base
	A.1.2. Demonstration system showing Building Blocks in a navigable knowledge base
	A.1.3. Auto generation of documentation from machine-readable components

	A.2. Component D122: The Agile Reference Architecture represented in RDF/Turtle format
	A.2.1. Introduction
	A.2.2. RDF Context
	A.2.3. Reusability
	A.2.4. Adaptation to new circumstances

	A.3. Component D123: An instance of OGC API – Processes
	A.3.1. Context
	A.3.1.1. Target Objectives
	A.3.1.2. OGC API — Processes Enhancement
	A.3.1.3. Motivation
	A.3.1.3.1. Strengths of OGC API — Processes
	A.3.1.3.2. Gaps for chaining processes
	A.3.1.3.3. Fictional Use Case: URBA and CITYSTATS

	A.3.2. Proposed Solution
	A.3.2.1. Integration of OGC Building Blocks
	A.3.2.2. Provisioning of Transient Building Blocks
	A.3.2.3. Implementation of a Processing Server

	A.3.3. Implementation
	A.3.3.1. Design Overview
	A.3.3.2. Components Configuration
	A.3.3.3. Reproject Process
	A.3.3.4. Execution Sequence

	A.4. Component D124: An instance of OGC API – Features serving OpenStreetMap data
	A.4.1. Overview
	A.4.2. Daraa API
	A.4.2.1. Overview
	A.4.2.2. Dataset
	A.4.2.3. ldproxy Configuration
	A.4.2.4. Deployment

	A.4.3. Tunisia API
	A.4.3.1. Overview
	A.4.3.2. Dataset
	A.4.3.3. Initial ldproxy Configuration
	A.4.3.4. Initial Deployment
	A.4.3.5. Updated configuration and deployment

	A.5. Component D125: An instance of OGC API — Features supporting real-time observations
	A.5.1. Overview
	A.5.2. Components
	A.5.2.1. Overview
	A.5.2.2. WIS 2.0 MQTT broker
	A.5.2.3. WIS 2.0 surface observation harvester
	A.5.2.3.1. Overview
	A.5.2.3.2. Workflow
	A.5.2.3.3. Build and deployment

	A.5.2.4. ldproxy
	A.5.2.4.1. Overview
	A.5.2.4.2. Database
	A.5.2.4.3. Publication of feature events
	A.5.2.4.4. Configuration

	A.5.2.5. D125 MQTT broker

	A.6. D127: An instance of OGC API – Tiles serving OS Open Zoomstack data
	A.6.1. Overview
	A.6.2. OS Open Zoomstack API
	A.6.2.1. Overview
	A.6.2.2. Dataset
	A.6.2.3. ldproxy Configuration
	A.6.2.4. Deployment

	A.7. Component D128: An instance of OGC API – Records
	A.7.1. Purpose
	A.7.2. Embedded metadata
	A.7.3. Metadata response formats
	A.7.3.1. Coupled resources
	A.7.3.2. Offerings
	A.7.3.3. Provenance
	A.7.3.4. Integrity

	A.7.4. Implementation
	A.7.5. OGC Building Blocks
	A.7.6. Decentralized identifiers

	Annex B (informative) Revision History
	Bibliography
	—————
	List of Tables
	Table A.1
	Table A.2 — Resources — ARA Blocks

	List of Figures
	Figure 1 — actual working brainstorming architecture (logical workflow)
	Figure 2 — architecture deployment example
	Figure 3 — architecture vision (The Open Group Architecture Framework)
	Figure 4 — possible reference architecture
	Figure 6 — next generation architecture
	Figure 7 — w3c did sample architecture
	Figure 8 — hyperledger fabric sample architecture
	Figure 9 — kubernetes persistent volume sample architecture
	Figure 10 — ogc data formats transition
	Figure 11 — ogc api(s) transition schema
	Figure 12 — IPTcreation example
	Figure 13 — Provenance definition
	Figure A.1
	Figure A.2
	Figure A.3
	Figure A.4
	Figure A.5 — Example of profiled RDF and associated SPARQL
	Figure A.6
	Figure A.7
	Figure A.8
	Figure A.9
	Figure A.10 — Global configuration (cfg.yml)
	Figure A.11 — Feature provider (store/entities/providers/tunisia.yml)
	Figure A.12 — API building blocks (store/entities/services/tunisia.yml)
	Figure A.13 — Docker Compose file (docker-compose.yml)
	Figure A.14 — Initial PZD040 features representation
	Figure A.15 — Updated PZD040 features
	Figure A.16 — Schema of the PZD040 features
	Figure A.17 — Components in the system (from interactive instruments) that provides observation data via the PubSub extension for OGC API - Features
	Figure A.18 — Deployment of the components
	Figure A.19 — SQL DDL of the WIS 2.0 surface observation features
	Figure A.20 — AsyncAPI definition
	Figure A.21 — Air temperature observations at a Swedish weather station in MQTT Explorer
	Figure A.22 — Feature provider (store/entities/providers/wis20.yml)
	Figure A.23 — API building blocks (store/entities/services/wis20.yml)
	Figure A.24 — MapLibre web map of the OS Open Zoomstack vector tiles with the "Road" style. Contains OS data © Crown copyright and database right 2023.
	Figure A.25 — ISO19139 coupled resource
	Figure A.26 — GeoDCAT-AP coupled resource
	Figure A.27 — Docker container offering
	Figure A.28 — OGC API-Processes offering (GeoJSON)
	Figure A.29 — OGC API-Features offering (GeoDCAT-AP)
	Figure A.30 — GeoDCAT-AP Provenance Statement
	Figure A.31 — ISO19139 Provenance Statement
	Figure A.32 — GeoDCAT-AP External Provenance Information
	Figure A.33 — Supported metadata formats
	Figure A.34 — Accessing the API-Records catalog with StacBrowser Client
	Figure A.35 — Accessing D124 metadata as Linked Data (GeoDCAT-AP)
	Figure A.36 — Reference to API description in RAINBOW (GeoJSON)
	Figure A.37 — Reference to API description in RAINBOW (JSON-LD)
	Figure A.38 — Description OGC API - Features - Part 1 in RAINBOW
	Figure A.39 — Accessing Building Block metadata as Linked Data (RAINBOW)
	Figure A.40 — Accessing API Records search responses as Linked Data (GeoDCAT-AP)
	Figure A.41 — DID document with service information
	Figure A.42 — DIF Universal Resolver
	Figure A.43 — Catalog record referring to resource DID identifier/document.

	List of Recommendations
	Requirement 1
	Requirement 2
	Requirement 3
	Requirement 4
	Requirement 5
	Requirement 6
	Requirement 7
	Requirement 8
	Requirement 9
	Requirement 10

