
OGC® DOCUMENT: 23-044
External identifier of this OGC® document: http://www.opengis.net/doc/PER/T19-D081

OGC TESTBED 19
HIGH PERFORMANCE
GEOSPATIAL
COMPUTING
ENGINEERING REPORT

ENGINEERING REPORT

PUBLISHED

Submission Date: 2023-11-16
Approval Date: 2024-01-25
Publication Date: 2024-04-26
Editor: Eugene Yu, Liping Di

Notice: This document is not an OGC Standard. This document is an OGC Public Engineering Report created as a deliverable in an OGC
Interoperability Initiative and is not an official position of the OGC membership. It is distributed for review and comment. It is subject to change
without notice and may not be referred to as an OGC Standard.
Further, any OGC Engineering Report should not be referenced as required or mandatory technology in procurements. However, the discussions
in this document could very well lead to the definition of an OGC Standard.

License Agreement

Use of this document is subject to the license agreement at https://www.ogc.org/license

Copyright notice

Copyright © 2024 Open Geospatial Consortium
To obtain additional rights of use, visit https://www.ogc.org/legal

Note

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The Open Geospatial
Consortium shall not be held responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property
rights of which they may be aware that might be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

OPEN GEOSPATIAL CONSORTIUM 23-044 ii

https://www.ogc.org/license
https://www.ogc.org/legal

CONTENTS

I. EXECUTIVE SUMMARY ...v

II. KEYWORDS .. v

III. CONTRIBUTORS ..v

1. INTRODUCTION ... 8

2. HIGH PERFORMANCE GEOSPATIAL COMPUTING ...10
2.1. Definition of High-Performance Geospatial Computing ...10
2.2. Key Application Drivers ..12
2.3. HPGC Frameworks .. 12
2.4. Data-Intensive Geospatial Analytics for HPGC .. 13
2.5. Standardization of HPGC-based Data-Intensive Geospatial Analytics ..14

3. HPGC API ... 17
3.1. HPGC API .. 17
3.2. HPGC API Client ..17
3.3. ZOO-Project with HPC support implementation ...18

4. HPGC API CLIENT LIBRARY ... 33
4.1. Introduction ...33
4.2. Generating the Python Client Library ...33
4.3. Major Functions of the Client Library .. 36
4.4. Using the Client Library in Python .. 38
4.5. Limitations of the HPGC API Client Library ..38

5. HPGC NOTEBOOK .. 42
5.1. Introduction ...42
5.2. Jupyter Notebooks .. 42
5.3. Limitations of the HPGC Notebooks .. 43
5.4. Future Development ... 44

6. CONCLUSIONS ... 47
6.1. Research Questions and Discussions ..47
6.2. Lessons Learned ... 49
6.3. Future Work ..50
6.4. Conclusion ... 51

ANNEX A (NORMATIVE) ABBREVIATIONS/ACRONYMS .. 55

OPEN GEOSPATIAL CONSORTIUM 23-044 iii

ANNEX B (INFORMATIVE) HPGC FRAMEWORKS .. 58
B.1. HPGC Frameworks ..58

ANNEX C (INFORMATIVE) HPGC NOTEBOOKS .. 65
C.1. Toy echo process notebook ..65
C.2. Ratio of bands from Landsat images notebook ... 67

BIBLIOGRAPHY ...71

LIST OF TABLES

Table 1 — Major steps in HPC and HPGC ...10

LIST OF FIGURES

Figure 1 — Illustration of authentication implementation based on the OpenID Connect (OIDC)
..19
Figure 2 — Sequence diagram ZOO-Project Deploy Operation ... 21
Figure 3 — Illustration of API implementation for deploying a process ..22
Figure 4 — Illustration of API implementation for replacing an already deployed process using
processID ..23
Figure 5 — Illustration of API implementation for undeploying (deleting) an already deployed
process using processID ...24
Figure 6 — Sequence diagram ZOO-Project HPC job creation ...30
Figure 7 — The workflow to generate the HGPC API Python Client ..35
Figure 8 — Major classes for HGPC API ..36
Figure B.1 — Architecture of CyberGIS-Compute ... 59
Figure C.1 — The notebook to execute a toy echo process ..66
Figure C.2 — The notebook to execute a image algebra process ...68

OPEN GEOSPATIAL CONSORTIUM 23-044 iv

I EXECUTIVE SUMMARY

Large-scale geospatial analytical computation is critically needed for tackling a wide range of
sustainability problems, such as climate change, disaster management, and food and water
security. However, such computation often requires high-performance computing (HPC)
resources that are not easily accessible or usable by geospatial researchers and practitioners
from various domains. To address this challenge, there is a need for developing and standardizing
tools and interfaces that can bridge the gap between user frontend and HPC backends and
enable effective and efficient use of High-Performance Geospatial Computing (HPGC) resources
for geospatial analytics.

This OGC Testbed 19 Engineering Report (ER) presents the results of a testbed task that:

• evaluated previous and current work in the application of HPC for geospatial analytics, and

• developed draft standards for HPGC resource definitions and processing interfaces.

This ER provides an overview of the Testbed 19 motivation, objectives, scope, and methodology,
as well as a summary of the main findings, recommendations, and future work directions.

CyberGIS-Compute is reviewed and used as a reference to develop the HPGC API. “CyberGIS-
Compute is an open-sourced geospatial middleware framework that provides integrated
access to high-performance computing (HPC) resources through a Python-based SDK and
core middleware services.”[3] The OGC API — Processes[14] is adopted as the base API
for standardizing and developing the HPGC API. A Python client library is developed to
demonstrate the process of client generation by leveraging the OpenAPI client stub/model
automatic generation capability[12]. Typical use cases and scenarios are demonstrated and
scripted in Jupyter Notebooks.

I I KEYWORDS

The following are keywords to be used by search engines and document catalogues.

OGC, Testbed 19, high performance computing, high performance geospatial computing,
application-to-the-cloud, testbed, docker, web service

I I I CONTRIBUTORS

All questions regarding this document should be directed to the editors or contributors.

OPEN GEOSPATIAL CONSORTIUM 23-044 v

NAME ORGANIZATION ROLE

Eugene Yu George Mason University Editor

Liping Di George Mason University Editor

Sina Taghavikish OGC Task Lead

Furqan Baig University of Illinois Urbana-Champaign Contributor

Gérald Fenoy Geolabs Contributor

Carl Reed Carl Reed and Associates Content Reviewer

OPEN GEOSPATIAL CONSORTIUM 23-044 vi

1

INTRODUCTION

OPEN GEOSPATIAL CONSORTIUM 23-044 7

1 INTRODUCTION

The field of large-scale geospatial analytical computation has become increasingly vital in
addressing a diverse range of sustainability challenges, including climate change mitigation,
disaster management, and ensuring food and water security. Geospatial researchers and
practitioners from various disciplines, such as geography, hydrology, public health, and social
sciences, are actively engaged in utilizing geospatial analytics to derive valuable insights.

Advanced cyberinfrastructure and expertise in computer science have empowered large-scale
computational problem-solving. However, expecting domain experts in geospatial-related fields
to possess extensive technical knowledge to directly interact with high-performance computing
(HPC) resources on advanced cyberinfrastructure is not realistic. Optimization of HPC resources
for the geospatial community’s specific computational challenges requires a bridge between user
frontends and HPC backends in the form of middleware tools.

To address this gap, designing and implementing middleware tools that enable seamless
interaction between geospatial domain experts and HPC resources is critical. Such tools should
abstract the complexities of HPC systems and provide standardized interfaces for effectively
accessing, utilizing, and managing High-Performance Geospatial Computing (HPGC) resources.
This undertaking necessitates substantial research and development efforts, along with the
generalization and standardization of various aspects related to HPGC resource definitions and
processing interfaces.

The objective of this Testbed 19 task is twofold: To evaluate previous and ongoing efforts
in applying HPC to geospatial analytics and to develop initial standards for HPGC resource
definitions and processing interfaces. By examining existing work in the field, identifying best
practices, challenges, and opportunities for enhancing the utilization of HPC in geospatial
domains is possible. The goal is to establish standardized guidelines that will facilitate the
seamless integration of HPGC resources into geospatial analytical workflows, ensuring their
efficient and effective use across diverse application domains.

Achieving this goal will foster collaboration between geospatial domain experts and HPC
specialists, enabling a more streamlined and accessible approach to large-scale geospatial
analytics. This ER outlines task findings, recommendations, and initial standards thereby
providing a foundation for future advancements in the field of High-Performance Geospatial
Computing.

OPEN GEOSPATIAL CONSORTIUM 23-044 8

2

HIGH PERFORMANCE
GEOSPATIAL COMPUTING

OPEN GEOSPATIAL CONSORTIUM 23-044 9

2 HIGH PERFORMANCE GEOSPATIAL
COMPUTING

This section will review the current status of High Performance Geospatial Computing
(HPGC)[4][7][10].

NOTE: Add any other clauses as needed

2.1. Definition of High-Performance Geospatial
Computing

High Performance Computing (HPC) refers to the application of advanced computing
technologies and techniques to solve computationally intensive problems that require a large
amount of processing power, memory, and storage. HPC often involves the use of clusters or
supercomputers made up of thousands of interconnected processors and storage devices.

High Performance Geospatial Computing (HPGC) refers to the use of advanced computing
techniques, tools, and systems along with geospatial data to solve complex problems related
to geography, environmental science, natural resources, national security, healthcare, and
other areas that rely on geospatial data analysis. In short, HPGC refers to the use of high
performance computing (HPC) resources to solve complex geospatial problems. HPGC utilizes
parallel processing, distributed architectures, cloud computing, and high-speed networking to
accelerate data processing, modeling, simulation, visualization, and analysis[4][10][13][15]. This
enables users to process, analyze, and interpret geospatial data to gain insights, solve problems,
and make informed decisions more efficiently and effectively. HPGC systems are typically
used to process and analyze large volumes of geospatial data, such as satellite imagery, aerial
photography, lidar data, or to run large simulation models in spatiotemporal domains.

Table 1 compares and summarizes major steps of HPC and HPGC.

Table 1 — Major steps in HPC and HPGC

STEP HPC HPGC

Problem formulation

Identify the problem that needs to be
solved and formulate it in a way that can be
transformed into a computationally intensive
task including breaking the problem into
smaller, more manageable sub-problems and
defining the inputs, outputs, and constraints
of the solution.

Identify the problem specifically in geospatial
domains, such as mapping and charting (e.
g., creation of large area maps), disaster
response (e.g., monitoring and emergency
response to natural disasters, such as floods,
hurricanes, and wildfires), and environmental
monitoring.

OPEN GEOSPATIAL CONSORTIUM 23-044 10

STEP HPC HPGC

Algorithm
development

Develop an algorithm or set of algorithms
that can efficiently solve the problem which
includes designing a suitable computational
model, selecting appropriate numerical
methods, and optimizing the algorithm for
parallel processing using techniques such
as load balancing, data partitioning, and
communication reduction.

Develop specialized algorithms for solving
geospatial problems including designing a
suitable geospatial computational model,
geospatial analytics, and optimizing geo-
computing with parallelism, such as
geospatial data partition, spatial indexing, and
spatial optimized computing.

Programming

Implement algorithms in code that can be
run on an HPC system, which includes using
specialized languages and libraries, such as
MPI (Message Passing Interface), OpenMP
(Open Multi-Processing), CUDA (Compute
Unified Architecture), or OpenCL (Open
Computing Language).

Implement geospatial algorithms which
includes using geospatial libraries, such as
Geospatial Data Abstraction Library (GDAL)
and spatial projection library, and leveraging
special clustering frameworks, such as Geo
Spark[22][24].

Testing and
debugging

Test and debug the code, which includes
running the code on smaller test cases,
comparing the results to analytical or
experimental benchmarks, and identifying
and fixing any errors or inefficiencies.

Test and debug the geospatial algorithms
implemented which includes verifying the
algorithms against geospatial theories and
geostatistical approaches and verifying the
results geospatially from ground truth data or
other verified data.

Execution and
monitoring

Execute the computational task, which
includes monitoring the system to detect
any abnormal behavior, diagnose and fix any
issues that arise, and collect performance
data for analysis and optimization.

Execute and monitor the geo-computing task.
Includes monitoring the progress, diagnosing
the geo-computing partitions and reduction,
and observing the progress with geospatial
visuals or maps.

Post-processing and
visualization

Post-process and analyze the results to
extract meaningful insights, which includes
sorting, filtering, and aggregating large
amounts of data, as well as visualizing the
results using tools such as graphs, charts, or
maps.

Post-process and analyze the geospatial
results which includes scaling, spatiotemporal
statistics, geostatistics, and visualization as
interactive maps.

The main benefits of using HPGC are as follows.

• Speed: HPGC systems can process large datasets of geospatial data quickly and efficiently
which can save time and money, and can also help organizations make better decisions
faster.

• Accuracy: HPGC systems can be used to process geospatial data with greater accuracy
than traditional methods, which can be important for applications such as climate
modeling and earthquake prediction.

OPEN GEOSPATIAL CONSORTIUM 23-044 11

• Scalability: HPGC systems can be scaled to handle larger and more complex datasets
which allows organizations to keep up with the ever-increasing volume and complexity of
geospatial data.

The major challenges of using HPGC are as follows.

• Cost: HPGC systems can be expensive to purchase and maintain.

• Complexity: HPGC systems can be complex to set up and use.

• Expertise: Using HPGC systems effectively requires specialized expertise.

2.2. Key Application Drivers

The following lists some of the key applications driving the utilization of high performance
geospatial computing.

• The increasing volume and complexity of geospatial data: The volume of geospatial data
is exponentially growing and the data are becoming increasingly complex making the
processing and analyzing of the data using traditional computing methods difficult.

• The need for real-time processing: In many cases, it is necessary to process and analyze
geospatial data in real time, such as for traffic management, disaster response, and
national security.

• The need for accurate and precise results: In many cases, obtaining accurate and precise
results when processing and analyzing geospatial data is necessary, including applications
for climate modeling, earthquake prediction, and wildfire prediction.

2.3. HPGC Frameworks

CyberGIS-Compute, a middleware framework to bridge high performance computing and end
users, was reviewed. It provides the base for the development of standard HPGC middleware/
services that achieve the same capabilities of CyberGIS-Compute, but in a more standards based
environment, which adopts widely-accepted specifications.

CyberGIS-Compute supports HPC job management (execution and monitoring) and collaborative
workflow orchestration. A more detailed review of the CyberGIS-Compute framework and
its relationship to the standards development process is available in the Appendix — HPGC
Frameworks.

OPEN GEOSPATIAL CONSORTIUM 23-044 12

2.4. Data-Intensive Geospatial Analytics for HPGC

HPGC can enable efficient processing of large volumes of data and data-intensive geospatial
analytics. Examples of data-intensive geospatial analytics that can leverage HPGC include the
following.

• Spatial data clustering: Clustering is a technique to group similar objects together based
on their spatial properties. Spatial clustering can be used to identify patterns and trends in
large geospatial datasets, such as urban planning or regional development.

• Geospatial machine learning: Machine learning algorithms, such as Random Forest[1],
Support Vector Machine[2], and neural networks (including deep learning neural
networks), can be applied to geospatial data to enable better prediction, classification,
and regression analysis. For example, geospatial machine learning can be used in precision
agriculture to predict crop yield, disease outbreaks, or identify soil types.

• Geospatial image processing: High-resolution satellite imagery can generate large volumes
of data. Analyzing such volumes of data is computationally intensive. HPGC can be used to
analyze large volumes of geospatial imagery data and extract meaningful information such
as land use, land cover changes, urban growth, or natural resources.

• Geospatial simulation modeling: Simulation modeling involves the creation of
mathematical models that emulate complex systems, such as traffic flow, pedestrian
movement, water flow, or environmental simulation. Computational complexity often
hinders simulation modeling using traditional computing techniques. HPGC can help in
overcoming this challenge and help model complex systems affected by location.

• High-Throughput Geospatial database management: Managing geospatial data requires
specialized tools and techniques. HPGC can be used to optimize geospatial database
management systems, from data integration, data warehousing, data indexing, and
querying. This can empower real-time geospatial analytics across various industries such
as city planning, transportation planning, or environmental analysis.

• Geospatial Optimization: A typical geospatial optimization problem is routing, which uses
spatial data such as traffic data, road network data, warehouse locations, and delivery
routes to optimize the logistics and distribution of goods and services. Optimizing spatial
configurations and resource allocation are computationally intensive. HPGC can be used
to address computationally complex geospatial optimizations that require numerous
iterations or combinatorial comparisons.

OPEN GEOSPATIAL CONSORTIUM 23-044 13

2.5. Standardization of HPGC-based Data-Intensive
Geospatial Analytics

HPGC has the potential to enable advanced and efficient geospatial analytics. Standardizing and
making HPGC geospatial analytic capabilities accessible to the broader geospatial community
can enhance knowledge sharing and enable better decision-making across different domains.
The HPGC-based geospatial analytics that can be standardized and made accessible to the
broader geospatial community include the following.

• Geospatial Data Processing Pipelines: Standardizing the construction and execution of
geospatial data processing pipelines can facilitate the integration and interoperability of
HPGC workflows. Defining common data processing steps, input/output formats, and
execution frameworks would enable users to easily exchange and share their geospatial
processing pipelines across different HPGC platforms.

• Large-Scale Spatial Data Analysis: Standardizing the algorithms and methodologies for
large-scale spatial data analysis tasks, such as spatial clustering, spatial interpolation, or
network analysis, can promote consistency and comparability of results across different
HPGC implementations, enabling researchers and practitioners to leverage shared
algorithms and approaches, reducing duplication of efforts, and fostering collaboration.

• Geospatial Machine Learning Models: Standardizing the development and deployment
of geospatial machine learning models can enhance reproducibility and interoperability.
This includes standardizing the representation and serialization of trained models, input/
output data formats, and evaluation metrics. Standardized geospatial machine learning
models would allow users to easily share, validate, and integrate models into their HPGC
workflows.

• Geospatial Simulation and Modeling Frameworks: Standardizing the frameworks
and interfaces for geospatial simulation and modeling can promote the exchange and
integration of different simulation models. By defining standard interfaces, input/output
formats, and simulation control mechanisms, researchers and practitioners can more easily
collaborate, validate, and reuse geospatial simulation and modeling components.

• Geospatial Image Analysis Workflows: Standardizing geospatial image analysis workflows
can improve the accessibility and reproducibility of image processing and analysis tasks.
Defining common data formats, preprocessing steps, feature extraction methods, and
quality assessment metrics can simplify the adoption and sharing of HPGC-based
geospatial image analysis workflows.

• Spatial Data Fusion and Integration Techniques: Standardizing the methods and
workflows for spatial data fusion and integration can enable the seamless integration of
data from multiple sources. This includes standardizing data formats, fusion algorithms,
data alignment techniques, and uncertainty modeling approaches. Standardized geospatial
data fusion and integration techniques would facilitate data sharing and interoperability
between different HPGC systems.

OPEN GEOSPATIAL CONSORTIUM 23-044 14

• Geospatial Optimization Models and Solvers: Standardizing the formulation and
solution approaches for geospatial optimization problems can promote the adoption and
exchange of optimization models and solvers. Defining standard problem representations,
optimization algorithm interfaces, and solution result formats would enable users to easily
apply and integrate HPGC-based geospatial optimization techniques into their workflows.

OPEN GEOSPATIAL CONSORTIUM 23-044 15

3

HPGC API

OPEN GEOSPATIAL CONSORTIUM 23-044 16

3 HPGC API

NOTE: This section is for the implementation of high performance geospatial computing API by
GeoLabs.

3.1. HPGC API

This Chapter covers the HPGC API. The initial API is developed based on the OGC API —
Processes Standard[14].

3.1.1. API — Processes

In Testbed 19, OGC API — Processes was adopted as the base API for algorithm management,
job scheduling, job monitoring, and workflow orchestration for HPGC.

3.1.2. HPGC Profile of API — Processes

Common geospatial processing frameworks, geospatial algorithms, clustering frameworks, and
typical workflow orchestrations can be implemented as processes or resource-based composite
process to be managed through an API — Processes implementation instance. The processes
were designed to support similar functions of the CyberGIS-Compute, but generalized to be
usable with other high performance computing frameworks.

3.2. HPGC API Client

The draft HPGC API is implemented as a profile of API — Processes Standard that is based
on OpenAPI technology. The Processes API Core does not mandate any encoding or format
for the formal definition of the API. The OpenAPI 3.0 specification is one option for defining
the Processing API. As such a conformance class is specified for OpenAPI 3.0, which depends
on the requirements class Core. While the use of OpenAPI 3.0 for the formal definition of
the Processes API is not mandatory, the requests/responses of the Processes API specified
are defined using OpenAPI 3.0 schemas. With OpenAPI technology, it is possible to generate
clients in different languages using OpenAPI Generator, including C++, Java, Go, Python, and
JavaScript. For Testbed 19, the Python client SDK was implemented with the assistance of
automatic client generation against the OpenAPI specification of the draft HPGC API.

OPEN GEOSPATIAL CONSORTIUM 23-044 17

http://geolabs.fr

3.3. ZOO-Project with HPC support implementation

GeoLabs reused its experience in accessing and using the HPC environment and the support
available in the ZOO-Project. The ZOO-Project is an Open Source Reference Implementation of
the OGC API — Processes — Part 1: Core and the OGC Web Processing Service (WPS) Standard
2.0.0 released under an MIT/X11 license.

In the past few years, GeoLabs developed support for the OGC API — Processes — Part 2:
Deploy, Replace, Undeploy draft specification as part of the ZOO-Project. This provides the
capability to deploy CWL packaged application in a Kubernetes cluster. The implementation
follows the OGC Best Practice for Earth Observation Application Package. Moving the
processing to the data rather than the data to the processing engine is now possible.

By combining support for the remote HPGC job scheduling with the one for the OGC API —
Processes — Part 2: Deploy, Replace, Undeploy draft specification, an end-to-end solution for
ease of interactions with HPGC is proposed. This solution partly covers the CyberGIS-Compute
capabilities.

The source code for the HPGC was published in the official ZOO-Project GitHub repository.
The Binary docker image is published on dockerhub and the corresponding Helm Chart on
artifacthub to deploy the solution on a kubernetes cluster.

3.3.1. Security consideration

When considering the client application for deploying and executing tasks on an HPC platform,
which are limited resources allocated to the project, the system will require authentication
to ensure that only authorized users can create and run new process resources. The security
mechanism available in the ZOO-Project as a filter_in process is used. The concept of filter_in
and filter_out was introduced during the implementation of the OGC API — Processes — Part 2:
Deploy, Replace, Undeploy draft specification. These security filters, like any other ZOO-Kernel
process, run for every received request. Filter_in processes run before the request is processed,
while filter_out processes run after.

Figure 1 illustrates the implementation of authentication as a web-process. By providing
such processes, the ability of a developer to change the default ZOO-Kernel behavior for any
request is provided. For example, one can decide to implement a service that verifies that an
authenticated user is authorized or not to access a given OGC API endpoint.

OPEN GEOSPATIAL CONSORTIUM 23-044 18

https://github.com/ZOO-Project/ZOO-Project
https://hub.docker.com/r/zooproject/zoo-project/tags?page=1&name=hpgc
https://artifacthub.io/packages/helm/zoo-project/zoo-project-hpgc

Figure 1 — Illustration of authentication implementation based on the OpenID Connect (OIDC)

The Keycloack software for authentication, which offers a state-of-the-art solution
for setting up an OpenID Connect provider, was used. With it, a dedicated
“OGC_TESTBED19_SECURED_AREA” realm was created for which both GitHub and GitLab
(using gitlab.ogc.org) were configured as identity providers.

A dedicated authorized_users parameter in the security section to store the comma-separated
list of users was added to allow access to the secured OGC API endpoints.

In addition to using Keycloack, another prototype server instance that uses the Authenix server
to authenticate users was successfully implemented which is a closed-source solution providing
a compliant OpenID Connect Authorization Server with federated SAML2-based login from
Google, Facebook, and eduGAIN. By doing so, users can authenticate using their OGC portal
credentials.

OPEN GEOSPATIAL CONSORTIUM 23-044 19

3.3.2. DeployProcess

In the OGC API — Processes — Part 2: Deploy, Replace, Undeploy draft specification, the Deploy
operation allows an authorized user to deploy a new process on the processing server. The
draft specification describes that the server may implement support for deploying an OGC
Application Package (using the encoding application/ogcapppkg+json). An OGC Application
Package is a process package described using the OGC Application Package information model.
The application package comprises a JSON object with two parameters: a processDescription
and an executionUnit. The processDescription conforms to the processes.yaml schema. The
process description part corresponds to what is obtained as a response for a GET request
to the /processes/{processId} path. On the other hand, the executionUnit conforms to the
executionUnit.yaml schema. The execution unit part defines what should be deployed on the
processing server.

In the case of HPC, only Secure Shell Protocol (SSH) access to the HPC instance is made
available. Consequently, deploying a new process on the processing server will require storing
the associated metadata information and the singularity container [5] to run on the HPC in
case the container for the process is unavailable. A container consists of an entire runtime
environment: an application, plus all its dependencies, libraries, and configuration files bundled
into one package [5]. Singularity is a tool for running software containers on HPC systems,
similar to Docker [5]. Singularity containers are common and well supported by HPC systems [5].

To store the metadata information associated with the new process, a dedicated filter_in
process, named securityIn, run by the ZOO-Kernel on every request was implemented. For
deployment in an HPC environment, a dedicated service called DeployOnHpc is invoked through
SSH to create a singularity container using the image provided in the executionUnit.

Suppose the filter_in process (securityIn) detects a Deploy operation using the application/
ogcapppkg+json encoding. In that case, the process then parses the metadata information from
the processDescription and invokes the execution of the DeployOnHpc process asynchronously
by sending an Advanced Message Queuing Protocol (AMQP) message to the ZOO-FPM.

The sequence diagram below illustrates the method of deploying a new process using the
prototype server implementation.

OPEN GEOSPATIAL CONSORTIUM 23-044 20

Figure 2 — Sequence diagram ZOO-Project Deploy Operation

Figure 3 illustrates the example of the API for deploying a process.

OPEN GEOSPATIAL CONSORTIUM 23-044 21

Figure 3 — Illustration of API implementation for deploying a process

The Replace operation works the same way. If version management is unavailable for the
deployed process, implementing the process as another filter_in process is possible. Version
management would require clearly defining the expected numbering scheme and how to handle
different versions of the same processes.

OPEN GEOSPATIAL CONSORTIUM 23-044 22

Figure 4 — Illustration of API implementation for
replacing an already deployed process using processID

Figure 5 illustrates the HPGC API “Undeploy” method for deleting an already deployed process.
The Undeploy operation is comparatively more complicated to handle properly as multiple
processes can rely on the same singularity container. This leads to no one-to-one relationship
between the process and the singularity container. Consequently, the Undeploy operation is
only responsible for removing the metadata information associated with a process, not the
singularity container. Note that it would be possible to correctly implement the singularity
container removal from the HPC server by keeping track of the one-to-many relationship
between the singularity container and the processes. Once no processes are associated with a
singularity container, the container can be removed.

OPEN GEOSPATIAL CONSORTIUM 23-044 23

Figure 5 — Illustration of API implementation for undeploying
(deleting) an already deployed process using processID

Also, when considering a singularity container from the HPC, an application should pay attention
to all the users with a deployed process associated with a given singularity container. Indeed,
in the case where two users deploy the same process, each user will do so in their namespace.
Nevertheless, on the HPC, only one singularity container is deployed.

While having a dedicated namespace on the HPC may sound good, such an approach also
implies that deploying the same application by two different users will require twice deploying
the same singularity container. This is why the Testbed task team decided not to use a
namespace on the HPC.

OPEN GEOSPATIAL CONSORTIUM 23-044 24

3.3.2.1. Additional Parameters for process binding

The ZOO-Project implementation relies on dedicated additional parameters embedded within
the processDescription provided during the Deploy operation, which can be added at every level
in the process description, meaning the parameters can be at the root, input, and output levels.

At the root level, finding an additional parameter named entry-point is expected. The parameter
contains the value to refer to the prefix of the command to execute on the HPC, i.e. singularity
exec otbtf_4.1.0-cpu.sif /opt/otbtf/bin/otbcli_BandMath.

At the input and output level, finding an additional parameter named pattern is expected. The
value of this parameter defines the way to add the parameter to the command to run, i.e. -name
value. This parameter applies to every input and output.

For multi-valued inputs, finding another parameter named array-pattern is expected. This
parameter provides the syntax to use if a client application uses multiple values for a single
input.

The ZOO-Kernel can produce an sbatch file containing the desired command to run on the HPC
using the additional parameters defined in this section. “sbatch” is used to submit a batch script
to Slurm. Slurm is an open source, fault-tolerant, and highly scalable cluster management and job
scheduling system for large and small Linux clusters.

Below is a process description from an HPGC API Deploy example followed by a corresponding
sbatch produced at execution time. This example illustrates how Orfeo ToolBox (OTB)[8]
applications can be deployed and executed.

{
 "processDescription": {
 "id": "BandMathX",
 "title": "This application performs mathematical operations on several
multiband images.",
 "description": "This application performs a mathematical operation on
several multi-band images and outputs the result into an image (multi- or
mono-band, as opposed to the BandMath OTB-application). The mathematical
formula is done by the muParserX library.The list of features and the syntax
of muParserX is available at [1].As opposed to muParser (and thus the BandMath
OTB-application [2]), muParserX supports vector expressions which allows
outputting multi-band images.Hereafter is a brief reference of the muParserX
syntaxFundamentals------------The formula can be written using:* numerical
values (2.3, -5, 3.1e4, ...)* variables containing pixel values (please,
note the indexing of inputs from 1 to N). Examples for the first input
image: * ''im1'' a pixel from 1st input, made of n components (n bands) *
''im1b2'' the 2nd component of a pixel from 1st input (band index is 1-based)
 * ''im1b2N3x4'' a 3x4 pixels Neighbourhood of a pixel the 2nd component
of a pixel from the 1st input * ''im1PhyX'' horizontal (X-axis) spacing
of the 1st input. * ''im1PhyY'' vertical (Y-axis) spacing of the 1st input
input. * ''im1b2Mean'' mean of the 2nd component of the 1st input (global
statistics) * ''im1b2Mini'' minimum of the 2nd component of the 1st input
(global statistics) * ''im1b2Maxi'' maximum of the 2nd component of the 1st
input (global statistics) * ''im1b2Sum'' sum of the 2nd component of the 1st
input (global statistics) * ''im1b2Var'' variance of the 2nd component of the
1st input (global statistics) * ''idxX'' and ''idxY'' are the indices of the
current pixel (generic variables)* binary operators: * ''+'' addition, ''-

OPEN GEOSPATIAL CONSORTIUM 23-044 25

'' subtraction, ''*'' multiplication, ''/'' division * ''^'' raise x to the
power of y * ''",
 "version": "1.0.0",
 "jobControlOptions": [
 "sync-execute",
 "async-execute",
 "dismiss"
],
 "outputTransmission": [
 "value",
 "reference"
],
 "links": [],
 "additionalParameters": {
 "parameter": [
 {
 "name": "entry-point",
 "value": "singularity exec otbtf_4.1.0-cpu.sif /opt/otbtf/bin/otbcli_
BandMathX"
 }
]
 },
 "inputs": {
 "il": {
 "title": "Image list to perform computation on.",
 "description": "Image list to perform computation on.",
 "maxOccurs": 1024,
 "additionalParameters": {
 "parameter": [
 {
 "name": "pattern",
 "value": "-name value"
 },
 {
 "name": "array-pattern",
 "value": "-name value value"
 }
]
 },
 "schema": {
 "oneOf": [
 {
 "type": "string",
 "contentEncoding": "base64",
 "contentMediaType": "image/tiff"
 },
 {
 "type": "string",
 "contentEncoding": "base64",
 "contentMediaType": "image/jpeg"
 },
 {
 "type": "string",
 "contentEncoding": "base64",
 "contentMediaType": "image/png"
 }
]
 }
 },
 "out": {
 "title": "Output image.",
 "description": "Output image.",
 "additionalParameters": {

OPEN GEOSPATIAL CONSORTIUM 23-044 26

 "parameter": [
 {
 "name": "pattern",
 "value": "None"
 }
]
 },
 "schema": {
 "type": "string",
 "default": "float",
 "enum": [
 "uint8",
 "uint16",
 "int16",
 "int32",
 "int32",
 "float",
 "double"
]
 }
 },
 "exp": {
 "title": "Mathematical expression to apply.",
 "description": "Mathematical expression to apply.",
 "additionalParameters": {
 "parameter": [
 {
 "name": "pattern",
 "value": "-name \"value\""
 }
]
 },
 "schema": {
 "type": "string"
 }
 },
 "ram": {
 "title": "Available memory for processing (in MB).",
 "description": "Available memory for processing (in MB).",
 "additionalParameters": {
 "parameter": [
 {
 "name": "pattern",
 "value": "-name value"
 }
]
 },
 "schema": {
 "type": "integer",
 "default": 256,
 "nullable": true
 }
 }
 },
 "outputs": {
 "out": {
 "title": "Output image.",
 "description": "Output image.",
 "additionalParameters": {
 "parameter": [
 {
 "name": "pattern",
 "value": "-name value inputs_out_value"

OPEN GEOSPATIAL CONSORTIUM 23-044 27

 }
]
 },
 "schema": {
 "oneOf": [
 {
 "type": "string",
 "contentEncoding": "base64",
 "contentMediaType": "image/tiff"
 },
 {
 "type": "string",
 "contentEncoding": "base64",
 "contentMediaType": "image/jpeg"
 },
 {
 "type": "string",
 "contentEncoding": "base64",
 "contentMediaType": "image/png"
 }
]
 }
 }
 }
 },
 "executionUnit": {
 "type": "SLURM",
 "image": "docker://mdl4eo/otbtf:4.1.0-cpu"
 }
}

In this process description, the additional parameter pattern has an empty value for the out
input, meaning that the result of the rewriting will be an empty string, whatever the value of
the out input is. On the other hand, from the out output the pattern has the value -name value
inputs[out] meaning that the value provided for the out input from the output pattern can be
referenced.

SLURM is used as a type in the execution unit to distinguish HPC processes from other possible
deployment supported.

#!/bin/bash

*** Default ZOO-Service HEADER (no header found) ***

#SBATCH --job-name=ZOO-Project_9c21a7d2-6c2f-11ee-98d0-0242c0a8e008_BandMath

*** Default ZOO-Service BODY (no body found) ***
echo "Job started at: $(date)"
echo "Running service: [BandMath]"
singularity exec otbtf_4.1.0-cpu.sif /opt/otbtf/bin/otbcli_BandMath \
 -il /home/x-gfenoy/wps_executions/data//6a15208156214f03ad83aa1dd991a699.
zca\
 -exp "im1b1+im1b2" \
 -ram "256" \
 -out /home/x-gfenoy/wps_executions/data/output_BandMath_out_9c21a7d2-6c2f-
11ee-98d0-0242c0a8e008.tiff float
echo "Job finished at: $(date)"
*** Default ZOO-Service FOOTER (no footer found) ***

The ZOO-Project implementation supports three templates for producing the sbatch file:
header, body, and footer. The ZOO-Project potentially uses these templates when creating the

OPEN GEOSPATIAL CONSORTIUM 23-044 28

sbatch. The generation of this sample sbatch did not use any template. The ZOO-Project also
supports the definition of SBATCH parameters inserted in the generated file before the job-
name definition.

3.3.3. Jobs management

OGC API — Processes — Part 1: Core Standard was used to execute processes on HPC providing
a way to make the deployed processes executable remotely.

On HPC, Slurm traditionally handles job scheduling. Slurm can manage tasks provided in sbatch
file format. Sbatch is similar to bash scripts but has specific options and parameters which
means that a client and/or application can feed Slurm with pre-cooked recipes containing all the
commands to execute.

To produce this sbatch file, the ZOO-Kernel combines metadata information provided within
the processDescription used to deploy the process with the payload content used to invoke its
remote execution.

As explained above, specific additional parameters embedded within the processDescription
metadata were defined to ease generation of the desired sbatch file. Also, the ZOO-Kernel
receives internal support for downloading and setting the parameters in such sbatch files for
HPC applications from a WPS request. During the testbed 19 period, the HPC support was
updated to handle OGC API — Processes — Part 1: Core standard requests. Consequently, one
authorized user can execute a process and create a job on the Processing Engine corresponding
to the job scheduled on the HPC.

Once an HPC runs the sbatch command, the ZOO-FPM responsible for handling the job
execution holds the jobid generated by Slurm, invokes the internal callback.py CGI script,
opens a socket in listen mode, and waits for a message. The callback.py CGI script invokes the
execution of the FinalizeHPC process, which connects to the HPC through SSH to get the state
of the job. SLURM only gives basic state information such as Pending, Running, Completed,
Failed, etc. The FinalizeHPC process uses this information to detect the end of an execution. In
such a case, it sends a message to the ZOO-FPM waiting for the end of the job. The ZOO-FPM
then follows the traditional way of handling produced results and potential failure in non-HPGC
environments.

The HPC application hosts the results or error messages, which must first be downloaded by the
ZOO-FPM. If the ZOO-FPM could download the result, the workflow continues with potential
publication of the results using the MapServer[11] library to produce the desired mapfile for
providing access to the relevant OGC Web Services, such as a Web Map Service (WMS), Web
Feature Service (WFS) or Web Coverage Service(WCS). MapServer is an Open Source platform
for publishing spatial data and interactive mapping applications to the web[11]. In other cases,
ZOO-FPM downloads the error log files and returns the exception details.

The sequence diagram below shows how the ZOO-Project handles the execution of tasks on
remote HPC.

OPEN GEOSPATIAL CONSORTIUM 23-044 29

Figure 6 — Sequence diagram ZOO-Project HPC job creation

OPEN GEOSPATIAL CONSORTIUM 23-044 30

3.3.3.1. Limitation

The Dismiss requirement class defines how client applications can cancel a job execution.
SLURM offers tools to cancel a job execution, which was not considered during Testbed 19.

OPEN GEOSPATIAL CONSORTIUM 23-044 31

4

HPGC API CLIENT LIBRARY

OPEN GEOSPATIAL CONSORTIUM 23-044 32

4 HPGC API CLIENT LIBRARY

This Chapter describes development of HPGC API client libraries for different programming
languages. Testbed 19 focused on developing a client library for Python.

NOTE: This section describes one of the HPGC API clients for Python. This task was led by
https://csiss.gmu.edu [George Mason University].

4.1. Introduction

The OGC API — Processes Standard defines requirements for describing and executing
geospatial processes [16]. The OpenAPI Generator [12] is a tool that can be used to generate
client libraries for interacting with APIs that are described using OpenAPI specifications.

This Section describes how to generate an API — Processes Python client library using the
OpenAPI Generator. This Section also describes the major functions of the generated client
library and provides example snippets of how to use the client library in Python.

4.2. Generating the Python Client Library

To generate the Python client library, the OpenAPI Generator must be installed. The OpenAPI
Generator generates code from an OpenAPI specification. The Generator can create code for
client libraries, server stubs, documentation, and configuration. It supports various languages
and frameworks.

The following are several options to install and run the OpenAPI Generator.

• Install the OpenAPI generator using pip:

The following command installs the openapi-generator in Python.

pip install openapi-generator
openapi-generator generate -i ogcapi-processes.bundled2.json -g python

• Download the Java Archive (JAR): The OpenAPI Generator is a Java program. The
compiled JAR can be downloaded and directly used. The following example script
downloads the jar and uses the Generator in a Linux environment.

mkdir -p ~/bin/openapitools
curl https://raw.githubusercontent.com/OpenAPITools/openapi-generator/master/
bin/utils/openapi-generator-cli.sh > ~/bin/openapitools/openapi-generator-cli
chmod u+x ~/bin/openapitools/openapi-generator-cli
export PATH=$PATH:~/bin/openapitools/

OPEN GEOSPATIAL CONSORTIUM 23-044 33

https://csiss.gmu.edu

openapi-generator-cli generate -i ogcapi-processes.bundled2.json -g python

• Compile from source code: The OpenAPI Generator can be compiled directly from
the source code. The current version (7.0.1) requires Java 11 and Apache Maven 3.3.4
or greater. The following shows example steps for compiling the program in a Linux
environment.

$ git clone https://github.com/OpenAPITools/openapi-generator.git
$ cd openapi-generaotr
$./mvnw clean install
$ java -jar modules/openapi-generator-cli/target/openapi-generator-cli.jar
generate \
 -g python -i http://geolabs.fr/dl/ogcapi-processes.bundled2.json
 -o /local/wksp/python

• Dokcer run: The OpenAPI Generator image can be directly used as a standalone
executable with Docker. The following is an example run in a Linux environment.

$ docker pull openapitools/openapi-generator-cli:latest
$ docker run --rm -v "${PWD}:/local" openapitools/openapi-generator-cli
generate \
 -i http://geolabs.fr/dl/ogcapi-processes.bundled2.json \
 -g pyton \
 -o /local/wksp/python

In Testbed 19, two API — Process instances (OpenAPI documents in JSON) were used to
generate models and stubs for the Python Client. These two documents contain definitions and
components for all parts of the OGC API — Processes Standard. One is the example OpenAPI
specification bundle available in the github of OGC API — Processes. Another is the OpenAPI
specification bundle used by the ZOO-Project. The generated models are collectively used in
developing the client library to support most extensions.

The OGC API — Processes are as follows.

• ZooWPS: http://geolabs.fr/dl/ogcapi-processes.bundled2.json

• API — Processes example bundle: https://raw.githubusercontent.com/opengeospatial/
ogcapi-processes/master/openapi/ogcapi-processes.bundled.json

Generated stubs and models contained errors which were fixed manually. The specification
documents contain errors in schema definitions, examples, and default values. The errors in the
specification documents were required to be fixed. Iterations of re-running the Generator were
done with stepwise correction of the specification documents.

Another group of errors resulted from the Generator. The OpenAPI Generator does not
completely support all legit schema definitions. In the case of OGC API — Processes
specifications, handling of AllOf, AnyOf, oneOf, and nested properties was problematic. The
generated models ended up as incomplete models. These models were manually revised.

The Figure 7 shows the workflow to generate the Python client for HPGC API using the
OpenAPI specification bundle documents of API — Processes. The Figure 8 shows the major
classes generated for the HPGC Python Client library.

OPEN GEOSPATIAL CONSORTIUM 23-044 34

http://geolabs.fr/dl/ogcapi-processes.bundled2.json
https://raw.githubusercontent.com/opengeospatial/ogcapi-processes/master/openapi/ogcapi-processes.bundled.json
https://raw.githubusercontent.com/opengeospatial/ogcapi-processes/master/openapi/ogcapi-processes.bundled.json

Figure 7 — The workflow to generate the HGPC API Python Client

OPEN GEOSPATIAL CONSORTIUM 23-044 35

Figure 8 — Major classes for HGPC API

4.3. Major Functions of the Client Library

The Python client library provides a number of functions for interacting with the servers that
implement the OGC API — Processes Standard. Some of the major functions are as follows.

• get_landing_page() or get_landing_page_with_http_info(): This function returns the landing
page of the HPGC API. The landing page provides links to the API definition, the
conformance declaration and the metadata about the processes offered by this service.

• get_api() or get_api_with_http_info(): This function retrieves the API definition which can be
in YAML, JSON, or rendered HTML page.

• get_conformance() or get_conformance_with_http_info(): This function retrieves the set of
OGC API — Processes conformance classes that are supported by this service.

• get_processes() or get_processes_with_http_info(): This function returns a list of all the
processes that are available on the server. The list of processes contains a summary of
each process the OGC API — Processes implementation offers, including the link to a more

OPEN GEOSPATIAL CONSORTIUM 23-044 36

detailed description of the process. For more information, see Section 7.7 of the API —
Processes Standard[16].

• get_process_description(process_id) or get_process_description_with_http_info(process_id):
This function returns information about a specific process. The process description
contains information about inputs and outputs and a link to the execution-endpoint for
the process. The Core does not mandate the use of a specific process description to
specify the interface of a process. That said, the API — Processes Core requirements class
makes the following recommendation: Implementations SHOULD consider supporting the
OGC process description. For more information, see Section 7.8 of the API — Processes
Standard[16].

• execute(process_id) or execute_with_http_info(process_id): This function starts a process. It
executes a process (this may result in the creation of a job resource e.g., for asynchronous
execution). The job id should be included in the response of the execution that will be used
in monitoring progress status and obtaining results if the process is successfully executed.
For more information, see Section 7.9 of the API — Processes Standard[16].

• get_jobs() or get_jobs_with_http_info(): This function returns the list of available jobs. For
more information, see Section 12 of the API — Processes Standard[16].

• get_status(job_id) or get_status_with_http_info(job_id): This function returns the status of
an executed process job. For more information, see Section 7.10 of the API — Processes
Standard[16].

• dismiss(job_id) or dismiss_with_http_info(job_id): This function cancels a job execution and
removes it from the jobs list. For more information, see Section 14 of the API — Processes
Standard.

• get_result(job_id) or get_result_with_http_info(job_id): This function returns the results of
an executed process job. The response lists available results of a job. In case of a failure,
the response instead lists exceptions. For more information, see Section 7.11 of the API —
Processes Standard[16].

• deploy(ogcapppkg) or deploy_with_http_info(ogcapppkg): This function deploys a process. For
more information, see Section 6.3 of the API — Processes Part 2[17].

• replace(process_id, ogcapppkg) or replace_with_http_info(process_id,ogcapppkg): This function
replaces a process. For more information, see Section 6.4 of the API — Processes Part
2[17].

• undeploy(process_id) or undeploy_with_http_info(process_id): This function undeploys a
process. For more information, see Section 6.5 of the API — Processes Part 2[17].

OPEN GEOSPATIAL CONSORTIUM 23-044 37

https://docs.ogc.org/is/18-062r2/18-062r2.html#sc_process_list
https://docs.ogc.org/is/18-062r2/18-062r2.html#sc_process_list
https://docs.ogc.org/is/18-062r2/18-062r2.html#sc_process_description
https://docs.ogc.org/is/18-062r2/18-062r2.html#sc_process_description
https://docs.ogc.org/is/18-062r2/18-062r2.html#sc_create_job
https://docs.ogc.org/is/18-062r2/18-062r2.html#Job_list
https://docs.ogc.org/is/18-062r2/18-062r2.html#sc_retrieve_status_info
https://docs.ogc.org/is/18-062r2/18-062r2.html#sc_retrieve_status_info
https://docs.ogc.org/is/18-062r2/18-062r2.html#Dismiss
https://docs.ogc.org/is/18-062r2/18-062r2.html#Dismiss
https://docs.ogc.org/is/18-062r2/18-062r2.html#sc_retrieve_job_results
https://docs.ogc.org/is/18-062r2/18-062r2.html#sc_retrieve_job_results
http://docs.ogc.org/DRAFTS/20-044.html#_87a6983e-d060-458c-95ab-27e232e64822
http://docs.ogc.org/DRAFTS/20-044.html#_18582f42-ebc6-4284-9333-c089068f62b6
http://docs.ogc.org/DRAFTS/20-044.html#_18582f42-ebc6-4284-9333-c089068f62b6
http://docs.ogc.org/DRAFTS/20-044.html#_16391f9e-538f-4a84-9710-72a6bab82842

4.4. Using the Client Library in Python

To use the Python HPGC API client library, the Python program needs to import the library. The
following code will perform the import:

import openapi_client

Once the client library is imported, the functions described above can be used to interact with
instance servers that implement the OGC API — Processes Standard. For example, the following
code shows how to get a list of all the processes that are available on the server:

the_api = openapi_client.api.processes_api.ProcessesApi()
processes = the_api.get_processes()

for process in processes:
 print(process.name)

The following code shows how to start a process:

the_api = openapi_client.api.processes_api.ProcessesApi()
process_id = the_api.execute("my_process_id")

print(process_id)

The following code shows how to get the status of a process:

the_api = openapi_client.api.jobs_api.JobsApi()
process_status = the_api.get_status("my_job_id")

print(process_status)

The following code shows how to get the results of a process:

the_api = openapi_client.api.jobs_api.JobsApi()
process_results = the_api.get_result("my_job_id")

print(process_results)

4.5. Limitations of the HPGC API Client Library

The HPGC API Client Library was developed using the OpenAPI Generator. The Generator
is a powerful tool that can be used to generate client libraries for interacting with APIs that
are described using OpenAPI. This Testbed 19 ER report describes how to use the OpenAPI
Generator to generate a Python client library for the OGC API — Processes Standard. This ER
also describes some of the major functions of the client library and provided snippets of how to
use the library in Python.

Below are some limitations of the automatic code generation for OGC API — Processes Python
client, with possible solutions or resolving strategies for each limitation.

• Incomplete or idiomatic code: The generated code may not be complete or may be
idiomatic Python. For example, the generated code may not handle all the possible error

OPEN GEOSPATIAL CONSORTIUM 23-044 38

conditions that an API can return. Further, the generated code may use Python idioms that
are not in common use in the Python community. Possible solutions are as follows.

• Use a tool such as Typeguard[19] or Pydantic[21] to validate the Python client code.
These tools can help in validating and generating more idiomatic and complete Python
code.

• Review the generated code and make any necessary changes. This is especially
important for handling error conditions and using Python idioms.

• Compatibility with Python versions: The generated code may not always be compatible
with the latest versions of Python or the underlying libraries. This is because the OpenAPI
Generator project or the related library is not actively maintained. Possible solutions
include the following.

• Use a tool such as Typeguard[19] or Pydantic[21] in validating and generating the
Python client code. These tools are more actively maintained than the OpenAPI
Generator project and are more likely to be compatible with the latest versions of
Python.

• Test the generated code with the version of Python to be used.

• Manually extend or modify the related validation functions, such as those used in
automatic validation of inputs/outputs against their schemas.

• Misalignment of developing OpenAPI specification and code generation tool: The
OpenAPI Specification (OAS) is still under development. The OGC API standard, such
as the OGC API — Processes Standard, is also under heavy development. New features
of OpenAPI specification and OGC Standards will emerge. There are also imperfections
existing in current specifications and the standards. The Generator may fail due to such
incompleteness or imperfections. Possible solutions are as follows.

• Use a tool like Typeguard[19] or Pydantic[21] to generate schema for OpenAPI
specification during the development of standards. These tools can help in writing a
more complete and accurate specification that are readily supported by existing tools.

• Validate the OpenAPI specification using a tool like the OpenAPI Validator[23].
An OAS-specific validator can check the compliance of OpenAPI specifications
and definitions. Such a rigorous specification development process with consistent
validation helps in identifying any errors or omissions at an early stage.

• Generate client/server code and validate the client/server models of multiple
programming languages using a tool such as OpenAPI Generator during the
development of OAS specifications for OGC Standards. Such programmatic validation
assures the programming-language-specific support of automatic code generation and
validation for both client and server.

OPEN GEOSPATIAL CONSORTIUM 23-044 39

• Defer the validation during the stubs/models generation stage by using option —
skip-validate-spec. However, this would increase the human review and handling of
generated models and classes.

• Limited support for complex workflows: OGC API — Processes can be used to implement
complex workflows, but automatic code generation may not be able to handle all of the
possible cases. Possible solutions are as follows.

• Use a tool such as ypeguard[19] or Pydantic[21] to generate the Python client code.
These tools can generate code for complex workflows, but additional code to handle
specific cases may need to be written.

• Review the generated code and make any necessary changes. This is especially
important for handling complex workflows.

• Lack of customization options: Automatic code generation tools may not offer many
customization options, making it difficult to generate code that meets your specific needs.
Possible solutions are as follows.

• Use a tool such as ypeguard[19] or Pydantic[21] to generate the Python client code.
These tools offer more customization options than the OpenAPI Generator project.

• Write a specialized code generation tool. This will give complete control over the
generated code.

• Use a generic class or object as a placeholder, leaving the detailed handling of objects
to the end users of the API client library.

• Human review is still necessary: Reviewing the generated code and making any necessary
changes is important because automatic code generation tools can make mistakes.
Possible solutions include the following.

• Review the generated code carefully, which is especially important for handling error
conditions and using Python idioms.

• Test the generated code thoroughly, which will help identify any bugs in the generated
code.

OPEN GEOSPATIAL CONSORTIUM 23-044 40

5

HPGC NOTEBOOK

OPEN GEOSPATIAL CONSORTIUM 23-044 41

5 HPGC NOTEBOOK

This Section describes the HPGC API with a Jupyter Notebook use case. This use case is
designed to demonstrate the complete process of using an HPGC API implementation instance
to plan, schedule, monitor, and receive the high demand geospatial computing task.

NOTE: This section describes the use cases documented in Jupyter Notebooks. This task was
led by George Mason University.

5.1. Introduction

The HPGC API Python client library is demonstrated in several Jupyter Notebooks for
interacting with an implementation of the HPGC API, which is based on the OGC API —
Processes Standard. This library can be used to perform a wide variety of tasks, such as
deploying and invoking HPC processes, monitoring job status, and retrieving results. The HPGC
API Python client library interacts with the middleware (OGC API — Processes) to interact with
HPC. The API — Processes service was implemented by GeoLabs.

The following notebooks demonstrate the use of the HPGC API Python client library in different
scenarios.

• Echo Process: This notebook demonstrates how to use the HPGC API Python client library
to deploy and invoke a simple “echo” process on the HPC cluster.

• Image Algebra: This notebook demonstrates how to use the HPGC API Python client
library to perform image algebra (ratio of bands from Landsat images) on the HPC cluster.

5.2. Jupyter Notebooks

5.2.1. Toy echo process notebook

This notebook was designed to show a typical use case for executing a process using the HPGC
Python Client Library. The toy process “echo” is used to showcase the complete steps of an
asynchronous execution demonstrating how to submit a simple echo job to HPC using the
HPGC API Python client library. More details about the notebook can be found in Section 1 of
the Appendix — HPGC Notebooks.

OPEN GEOSPATIAL CONSORTIUM 23-044 42

https://csiss.gmu.edu

5.2.2. Ratio of bands from Landsat images notebook

This notebook was designed to show one of the typical use cases involving all the steps in an
HPGC process deployment, discovery, execution, and result retrieval. The process “BandMath”
was used to demonstrate the complete process of interacting with the HPGC through the HPGC
Python Client Library. This demonstrates:

• how to authorize the client;

• how to deploy a process to HPGC;

• how to submit (execute) an image algebra job in the HPGC;

• how to retrieve the results; and

• how to visualize the results geospatially, using the HPGC API Python client library.

The example shows the whole workflow to calculate the ratio of bands from Landsat images
using the HPGC. More details about the notebook can be found in Section 2 of the Appendix —
HPGC Notebooks.

5.3. Limitations of the HPGC Notebooks

The HPGC API notebooks are a valuable resource for learning how to use the HPGC API to
interact with an HPC system. All the notebooks are developed to demonstrate the HPGC API
Python client library. The notebooks demonstrate the capabilities and advantages of using the
HGPC API to interact with an HPC system.

• The HPGC API is a powerful middleware for interacting with any HPC system to perform
a wide variety of tasks. The API hides the details of complexity of interacting with the
HPC platform by using a unified, standard interface. An implementation of the HPGC API
provides access to process management, executing a process, monitoring an executed job,
retrieving the results, and displaying the results along by incorporating implementations of
other OGC Web services (e.g., WMS, API — Maps).

• The HPGC API Python client library is easy to use and provides a simple interface for
interacting with the HPGC API. The library is published in the public python repository —
PyPI. It can be installed, imported, and used with the standard python installer — pip.

• HPGC API notebooks are a useful way to learn how to use the HPGC API and to explore
the different types of jobs that can be submitted to HPC. The notebooks show the steps
along with code snippets. Responses are also shown with the execution of each step.
All these expose the functions of the HPGC Python Client library and the HPGC API
middleware.

OPEN GEOSPATIAL CONSORTIUM 23-044 43

However, there are still limitations on the notebooks, the HPGC API Python client library, and
the HPGC API middleware. Following is a list some of the limitations or challenges.

• Limitation of HPGC API: The HPGC API is based on the OGC API — Processes Standard.
However, some Parts of the API – Processes Standard are in development and hence
may change in the future. The specification of the process description is quite generic
and is not specific enough for specifying the definition of HPGC processes targeting at
running in an HPC system. Profiles may need to be developed to better support the HPGC
process with well-defined specifications for geospatial inputs and outputs. An algorithm
or workload management scheme may be included in the profile to have a more specific
standard for HPGC.

• Limitation of HPGC API Python Client library: The HPGC API Python client library is a
relatively new library and there are still some things to learn about how to use this library
effectively. For example, one challenge is that the library does not currently support all the
features of draft Parts to the OGC API — Processes Standard that are in development. Not
all schema or components are properly modeled with the HPGC client library which forges
some of the benefits of automatic validations on input and response of the OpenAPI
technology. Additionally, the library can be a bit difficult to use at first as it requires some
knowledge of the OGC API — Processes Standard.

• Limitation of the notebooks: Limited scenarios are covered in developed notebooks.
These notebooks cover only the basic use of the HPGC Python Client library and the
HPGC API. The notebooks may not be usable due to the availability of the HPGC API
server and security restrictions for using some HPC platforms. Other things to keep in
mind when using these notebooks include the following.

• The notebooks are for demonstration purposes only. They may not be suitable for
production use.

• The notebooks may not be compatible with all HPC clusters.

• The notebooks may not be compatible with all versions of the HPGC API.

5.4. Future Development

The HPGC API Python client library is a powerful tool for interacting with the HPGC API,
which is based on the OGC API — Processes Standard. The Jupyter notebooks described
above demonstrate the use of the library in different scenarios. Additional notebooks could be
developed to demonstrate other scenarios, such as machine learning, data visualization, and
scientific computing.

To further demonstrate the use of the HPGC API and the HPGC Python client library, additional
scenarios, such as the follwoing, may be developed and demonstrated in HPGC API notebooks.

• Machine Learning: Use the HPGC API Python client library to train and deploy a machine
learning model on the HPC cluster.

OPEN GEOSPATIAL CONSORTIUM 23-044 44

• Data Visualization: Use the HPGC API Python client library to generate and visualize data
on the HPC cluster.

• Scientific Computing: Use the HPGC API Python client library to perform scientific
computing tasks on the HPC cluster.

• Image classification: Demonstrates the use of the HPGC API to submit an image
classification job to HPC.

• Object detection: Demonstrates the use of the HPGC API to submit an object detection
job to HPC.

• Natural language processing: Demonstrates the use of the HPGC API to submit a natural
language processing job to HPC.

• Weather simulation and forecasting: Demonstrates the use of the HPGC API to deploy
and execute a job that produces huge amounts of data in the HPC.

OPEN GEOSPATIAL CONSORTIUM 23-044 45

6

CONCLUSIONS

OPEN GEOSPATIAL CONSORTIUM 23-044 46

6 CONCLUSIONS

This Chapter will summarize lessons learned and findings.

NOTE: This section has contributions from all participants and presents major results, findings,
lessons learned, open discussions, and conclusions.

6.1. Research Questions and Discussions

The HPGC task started with the following questions in mind.

• Are there any (representative) geospatial libraries that can be initially adapted in High-
Performance Computing (HPC) environments to support a wide range of geospatial
workflows?

• For data-intensive workloads, what is a standardized geospatial data model that can
exploit heterogeneous High-Performance Computing (HPC) resources?

• How can code be contributed to an open High-Performance Geospatial Computing
(HPGC) platform while avoiding potential misuse of High-Performance Computing (HPC)
computational resources?

In Testbed 19, the prototype implementations and scenarios across HPGC API middleware
service, access client, HPGC workflow design, and data retrieval were experimented upon. The
following three sections describe the major results in responding to the research questions
above, respectively.

6.1.1. The HPGC API based on OGC API — Processes

The rationale for selecting the OGC API — Processes Standard as the base to develop HPGC
API: Existing and developing OGC Standards are widely accepted in the geospatial domain.
Nearly all of the functional requirements for bridging HPGC can be met by using requirements
as specified in the API — Processes Standard.

6.1.2. Data management and data models for HPGC

Developers and Scientists generally utilize High Performance Computing (HPC) resources to
scale compute-heavy workflows. However, modern computing problems usually come coupled
with large datasets and associated challenges. These challenges are further aggravated by
the complexity and high dimensionality of geospatial data. Traditional geospatial workflows

OPEN GEOSPATIAL CONSORTIUM 23-044 47

accelerated on HPC infrastructure usually incur high IO overhead associated with data
movement costs into and out of the HPC infrastructure.

While there are some strategies such as lazy loading, etc., to manage large input datasets, no
particular methodology exists except to download output data to the local environment for
further analysis. For geospatial output data, instead of downloading the data, it may be useful
to visualize the data using an intermediary mapping service such as a Web Map Service (WMS),
etc. The mapping service can directly render the output to the user instead of moving all the raw
output data back to the local user environment.

A typical High Performance Geospatial Computing (HPGC) workflow involves the following
stages on data.

• Read input data on an HPC platform.

• Process data on an HPC platform.

• The HPC platform generates output data.

• Storage strategy of output data. Possibly, either one of the following options.

• Output data is moved to a web server hosting mapping service.

• Output data is downloaded to the local non-HPC environment.

• Output data is visualized for further analysis.

The challenging question for data flows in HPGC is: Where should the web mapping service be
hosted? If hosted outside the HPC environment, data would need to be moved to the hosting
environment, defeating the purpose of removing unnecessary data transmissions. To achieve the
purpose delivery of output data, possible solutions may include the following.

• Possible Solution-1: A possible solution is to bring the service closer to the data. HPGC
resources are generally shared among multiple users and jobs usually run in singularity/
Apptainer containers on an HPC platform. This allows for efficient decoupling of different
environments on the HPC resources. At the same time, this also allows for the opportunity
to configure custom software inside the containerized environment. Can the mapping
service be embedded inside the singularity container used for HPGC tasks? The challenge
of this solution: HPC systems are usually closed systems with high security measures.
Hosting a web service will require exposing network endpoints to the outside world
which theoretically goes against HPC security principles. Further exploration is required
to understand security on singularity containers and requirements to configure mapping
service on HPC.

• Possible Solution-2: Another option is to take advantage of data management services
such as Globus which can integrate with HPGC backends[6][9]. In this case, the mapping
service will be hosted on a non-HPC server. A shared data access point will be created
between the HPGC environment and the mapping server. An HPGC job will write output
data to the shared directory which will be accessible to the mapping server via a Globus-
like shared endpoint. The challenge of this solution: While this may avoid security issues
related to the HPC platform, this will eventually still require data movement between

OPEN GEOSPATIAL CONSORTIUM 23-044 48

https://docs.globus.org/:

the server and the HPGC environment. There is the assumption that Globus-like services
may have incorporated methodologies on their end to mitigate costs associated with data
movement between shared endpoints.

6.1.3. Standard workflows and vulnerability assurance

HPC resources need to be protected. The code to be executed on the HPC platform needs to
be reviewed before deploying into the HPC environment. In CyberGIS-Compute, the workflow
code needs to be pre-hosted on GitHub repositories. All submissions must be verified through
a human check and review process. The workflow code provides configurations, system
environment, and developer API. In CyberGIS-Compute, Git commit version locking is applied to
the workflow code for enhanced security, guaranteeing consistent and tamper-proof execution.

In Testbed 19, the workflow code development process was “modernized” by adopting
standardized workflow languages such as SLURM and CWL. However, to maintain the
security of HPGC, a human review process is still necessary. The OGC Best Practice for Earth
Observation Application Package Description was utilized to describe and register the process.

To further enhance workflow security and accessibility, consider implementing the following
measures as new requirements in the OGC API — Processes Standard.

1. Automated Code Review: Employ automated code review tools to identify
potential vulnerabilities or security flaws in workflow code before deployment.
A specialized API operation can be integrated into the process management to
facilitate human involvement in the review process.

2. Code Version Control Service: API — Processes should leverage version control to
manage code at different levels of security assessment.

3. Documentation and User Guidelines: Provide comprehensive documentation
and user guidelines to assist end users in effectively understanding and utilizing
workflows. The Application Package Description can be expanded to incorporate
this HPGC-specific information.

4. Regular Security Audits: Conduct regular security audits of the code
repository and workflow deployment process to identify and address potential
vulnerabilities.

6.2. Lessons Learned

Lessons learned:

• Standardization of HPGC API: Standardization of an HPGC API promotes interoperability,
simplifies development, and reduces maintenance costs. The following are the
fundamental challenges observed during the standardization process.

OPEN GEOSPATIAL CONSORTIUM 23-044 49

• Identifying HPGC stakeholders is essential.

• Specifically describing and formally defining HPGC is hard and requires input from a
broad set of stakeholders.

• Use of API — Processes for HPGC API: The OGC API - Processes — Part 2: Deploy,
Replace, Undeploy draft specification with the OGC Application Package offers a practical
way to deploy and execute processes on a Server Instance. The OGC API — Processes
— Part 1: Core Standard and its processes.yaml schema supports specifying additional
parameters at every level of the process description. The prototype implementation uses
them for defining process binding information embedded within the payload used for
the Deploy operation. By using the CWL encoding for deploying processes and following
the OGC Best Practice for Earth Observation Application Package, defining any process
binding is not required, easing the creation of new processes and their management. The
ZOO-Project proved to be a fast-prototyping platform.

• Developing HPGC standards will not only help system developers but will also be
useful for end users.

• Performance optimization: Performance optimization for HPGC APIs should focus on
minimizing data transfer, utilizing parallel processing, and employing efficient memory
management techniques. While addressing these aspects, several challenges must be
considered. These may include:

• considerable effort is required to optimize traditional geospatial algorithms to take full
advantage of HPGC systems; and

• parallelization strategies can generally improve the performance of an HPC workflow.
However, the performance of modern HPC workflows, and especially HPGC
workflows, are highly dependent on the data handling and management.

• Data management: Decoupling the data service from HPGC systems poses a significant
challenge. Retrieving relevant results from large datasets generated during simulations or
computations can be particularly difficult.

6.3. Future Work

Some future directions include the following.

• Performance optimization: The performance optimization for HPGC API implementations
may further explore hardware-specific optimization (utilizing unique capabilities of specific
HPGC hardware, such as GPUs or Field Programmable Gate Arrays), develop adaptive
performance optimization strategies, enhance data reduction/compression, incorporate
advanced machine learning-based optimization, optimize partitioning and distribution,
develop performance benchmark, and optimize geospatial data models.

OPEN GEOSPATIAL CONSORTIUM 23-044 50

• Resource management for HPGC: Data resource management for HPGC may consider
developing adaptive data management strategies (discovery & retrieval), integrating
geospatial data visualization, develop data access control and leveled-security
mechanisms, and implement data lineage and quality assurance.

• Geospatial data indexing and partition for HPGC: To advance the use of parallelism in
HPGC implementations, future studies along the direction of geospatial data indexing and
partitioning may investigate adaptive indexing strategies, dynamic partitioning, impact of
indexing and partitioning on query performance, and best practices on geospatial data
indexing and partitioning.

• More specialized notebooks for different scenarios and use cases: Potential areas for
future work on developing more notebooks to demonstrate the typical scenarios and
use cases for the use of HPGC through implementations of the HPGC API may include
building up a rich collection of notebooks covering a wide range of HPGC use cases,
developing categorized notebooks on application domains, incorporating standard
interactive geospatial visualizations, supporting coding with multiple programming
languages, and establishing a common repository for sharing and maintaining community-
developed notebooks.

• Big data handling: Big data handling can be challenging for HPGC at both the server-side
and the client-side. Future studies may explore efficient data ingestion and processing
techniques, investigate data management frameworks, optimize data compression
strategies, survey real-time data streaming and processing techniques, implement data
quality assurance, and develop benchmark suites.

6.4. Conclusion

This report details the design and implementation of an API-based approach for high-
performance geospatial computing (HPGC). A key component, the HPGC API, was developed
and profiled based on the existing OGC API – Processes Standard demonstrating its ability to
support and bridge the gap between HPC resources and end users. The HPGC API provides a
standardized and geospatially-aware interface for accessing and manipulating HPC workflows
and for simplifying the user experience compared to previous middleware solutions like
CyberGIS-Compute.

To further enhance user accessibility, a client Python library based on the HPGC API was
implemented. This library streamlines workflow deployment, execution, monitoring, and result
visualization within the familiar environment of Jupyter notebooks. This exemplifies the ease
and flexibility of utilizing the HPGC API for real-world geospatial computing tasks.

The development of the Python client library also serves as a template for creating client
libraries in other programming languages. By leveraging OpenAPI Generator, a powerful tool
supporting various popular languages, developers can readily create dedicated client interfaces
for their preferred environment. This fosters broader adoption of the HPGC API, enabling

OPEN GEOSPATIAL CONSORTIUM 23-044 51

researchers and professionals from diverse backgrounds to readily leverage the power of HPC
for geospatial analysis.

Utilizing the OGC API — Processes — Part 2: Deploy, Replace, Undeploy draft specification
enabled demonstration of deploying the corresponding Singularity container in the HPC
platform for a set of processes available in a Docker container. This deployment facilitated
remote invocation of the targeted process execution using the OGC API — Processes — Part
1: Core. Nevertheless, to achieve this goal, an implementation-specific use of the additional
parameters for defining the process binding was used. In other words, the way the command
to execute the application, embedded in the deployed singularity, should be written in the
sbatch file. This prototype implementation partially covers the CyberGIS-Compute capabilities,
including the Job Submission and the Job monitoring & results.

If CWL had been leveraged as the encoding for deploying processes, this implementation-
specific use of additional parameters would not have been required. Also, by reusing the OGC
Earth Observation Application Package Best practice, there would be the advantages of using
cloud-native formats and would have solved the issue of downloading and transferring the
data to HPC. Also, comparing the Stage-in and Stage-out requirements classes from the OGC
Earth Observation Application Package Best Practice with the Initialize and Finalize part of the
CyberGIS application is possible. Also, the CWL encoding can be used to compare the manifest
from CyberGIS with the Application Package. In such a new prototype implementation, the
download repository operation defined in CyberGIS is comparable with the download of the
CWL file.

In conclusion, the HPGC API and its client SDK represent a significant step forward in bridging
the gap between HPC infrastructure and end users. By providing a standardized, geospatially-
aware interface, coupled with readily deployable client libraries, this approach empowers
users of all skill levels to harness the immense potential of HPC for groundbreaking geospatial
discoveries.

While the HPGC API and client SDK offer a powerful foundation, several exciting avenues
beckon for further exploration.

• Human-in-the-Loop HPC Workflows: Integrating human expertise into the workflow
deployment and security process, particularly through an “audition” step, could ensure
code quality and address potential security vulnerabilities before full-scale HPC execution.
This could involve automated code reviews with human oversight, fostering a more robust
and secure environment for HPC geospatial analysis.

• Data-Intensive Processes: The HPGC API should be further optimized for data-intensive
workflows, where massive datasets are either fed into HPC for analysis or produced
as outputs from simulations. This entails efficient data transfer mechanisms, real-
time progress monitoring tailored to data volumes, and optimized data retrieval and
visualization solutions that can handle large geospatial datasets effectively.

• Deep Dive into HPC Workflow Coding: Moving beyond the API layer, future efforts could
delve into the actual workflow coding for HPC, incorporating geospatial considerations
from the ground up. This might involve developing common frameworks specifically
designed for geospatial HPC workflows, enabling programmers to leverage optimized
geospatial algorithms and data structures within their code.

OPEN GEOSPATIAL CONSORTIUM 23-044 52

• Advanced Use Cases for HPGC: Advanced Use Cases for HPGC: By pushing the
boundaries of HPGC, its potential for powering cutting-edge geospatial applications can
be further explored. This could involve leveraging deep learning models for automated
feature extraction and classification, employing AI techniques for knowledge extraction
and prediction from geospatial data, and developing specialized frameworks for tackling
complex geospatial challenges like climate modeling and urban planning.

OPEN GEOSPATIAL CONSORTIUM 23-044 53

A

ANNEX A (NORMATIVE)
ABBREVIATIONS/ACRONYMS

OPEN GEOSPATIAL CONSORTIUM 23-044 54

A ANNEX A
(NORMATIVE)
ABBREVIATIONS/ACRONYMS

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

CPU Central Processing Unit

CUDA Compute Unified Architecture

CWL Common Workflow Language

CyberGIS Cyberinfrastructure-based GIS

DRU deploy, replace, and undeploy a process

FGPA field-programmable gate array

GIS Geographic Information System

GPU Graphic Processing Unit

HPC High Performance Computing

HPGC High Performance Geospatial Computing

HTML HyperText Markup Language

JAR Java Archive

JSON JavaScript Object Notation

MPI Message Passing Interface

OAS OpenAPI Specification

OIDC OpenID Connect

OpenCL Open Computing Language

OpenMP Open Multi-Processing

OPEN GEOSPATIAL CONSORTIUM 23-044 55

OTB Orfeo Toobox

SLURM Simple Linux Utility for Resource Management

SSH Secure Shell Protocol

WCS Web Coverage Service

WFS Web Feature Service

WMS Web Map Service

YAML YAML Ain’t Markup Language

OPEN GEOSPATIAL CONSORTIUM 23-044 56

B

ANNEX B (INFORMATIVE)
HPGC FRAMEWORKS

OPEN GEOSPATIAL CONSORTIUM 23-044 57

B ANNEX B
(INFORMATIVE)
HPGC FRAMEWORKS

NOTE: This annex provides a review of existing HPGC frameworks.

B.1. HPGC Frameworks

The Testbed 19 participants reviewed the existing CyberGIS-Compute, the middleware
developed and used at UIUC for bridging HPC systems and end users.

B.1.1. CyberGIS-Compute

B.1.1.1. Architecture

CyberGIS is defined as a “fundamentally new GIS modality based on holistic integration of high-
performance and distributed computing, data-driven knowledge discovery, visualization and
visual analytics, and collaborative problem-solving and decision-making capabilities.”[18]

CyberGIS-Compute is an open-source framework for HPGC that provides a high-level API for
interacting with HPC resources[20]. It is designed to be scalable and flexible, making it suitable
for handling large datasets and complex workflows.

CyberGIS-Compute is based on a three-tier architecture.

• The CyberGIS-Compute SDK is a Python-based SDK that provides a high-level API for
interacting with the CyberGIS-Compute framework. It is used to submit workflows to HPC
resources, manage jobs, and access data and results.

• The CyberGIS-Compute Core is the core middleware service that provides the underlying
infrastructure for the CyberGIS-Compute framework. It includes a scheduler, a file system,
and a communication layer. The scheduler is responsible for managing the execution
of workflows on HPC resources. The file system is used to store data and intermediate
results. The communication layer is used to exchange data between the different
components of the framework.

OPEN GEOSPATIAL CONSORTIUM 23-044 58

• The CyberGIS-Compute Plugins are a collection of third-party plugins that extend the
functionality of the CyberGIS-Compute framework. Plugins are available for a variety of
tasks, such as data processing, visualization, and analysis.

Figure B.1 — Architecture of CyberGIS-Compute

B.1.1.2. Internal Working

The internal working of CyberGIS-Compute’s architectural components is designed to support
High-Performance Geospatial Computing (HPGC) workflows. The following is a review and
commentary on these components.

1. High Performance Computing Infrastructure: CyberGIS-Compute leverages an
HPC platform that is built as a parallel computing architecture across multiple
architectures (across CPU, GPU, and FPGA), with cluster computing, or a grid
and distributed computing. The HPC platform provides mechanisms for parallel
computation, allowing tasks to be executed across multiple computing nodes
or clusters. The HPC platform can handle the computational demands of HPGC
workflows.

2. Geospatial Abstractions: The framework incorporates geospatial abstractions
that simplify the representation and manipulation of geospatial data. These
abstractions provide higher-level programming interfaces and tools that are
specifically tailored for geospatial analysis. By abstracting the complexity of

OPEN GEOSPATIAL CONSORTIUM 23-044 59

working with geospatial data, CyberGIS-Compute enables users to focus on the
analysis tasks rather than low-level data handling.

3. Data Storage and Management: Efficient data storage and management are
critical components of HPGC workflows. CyberGIS-Compute utilizes geospatial
databases, distributed file systems, or cloud storage to store and manage
geospatial data. This allows for easy access, retrieval, and processing of data
during geospatial analysis tasks. The choice of storage systems depends on the
specific requirements and scale of the geospatial data being processed.

4. Workflow Orchestration: CyberGIS-Compute supports workflow orchestration,
enabling users to define and manage complex geospatial computing workflows.
This component supports the integration of multiple geospatial analysis tasks
into a cohesive and automated workflow. Users can define dependencies,
task execution order, and data flow between different stages of the workflow.
Workflow orchestration enhances the efficiency and reproducibility of HPGC
workflows.

5. Integration with CyberGIS Gateway: CyberGIS-Compute integrates with the
CyberGIS Gateway, a web-based platform that provides access to geospatial
computing resources and tools. This integration enhances the usability and
accessibility of the framework by providing a user-friendly interface for
interacting with CyberGIS-Compute’s capabilities. Users can access and utilize
the framework’s features through the gateway, making it easier to deploy and
manage HPGC workflows.

6. Performance Optimization: CyberGIS-Compute emphasizes performance
optimization to achieve efficient geospatial computing. This includes load
balancing techniques, task scheduling algorithms, and resource allocation
strategies to effectively distribute computation across the available resources.
These optimizations aim to maximize the utilization of computing resources,
reduce processing time, and enhance the overall performance of HPGC
workflows.

The internal working of CyberGIS-Compute’s architectural components aligns with
the requirements of High-Performance Geospatial Computing. The integration of HPC
infrastructures, geospatial abstractions, workflow orchestration, data storage and management,
and performance optimization enables efficient and scalable processing of geospatial data.
The integration with the CyberGIS Gateway further enhances the usability and accessibility of
the framework. However, the specific implementation details and configuration options may
vary, depending on the chosen technologies and customization requirements for specific HPGC
workflows.

B.1.1.3. Potential Improvements of CyberGIS-Compute

Possible improvements to the framework of CyberGIS-Compute to make it be a general High-
Performance Geospatial Computing framework are as follows.

OPEN GEOSPATIAL CONSORTIUM 23-044 60

1. Standardization of Geospatial Abstractions: Establish and promote standard
geospatial abstractions within the framework. This includes adopting widely
recognized geospatial data models, formats, and metadata standards to ensure
interoperability with other geospatial tools and systems. Standardized geospatial
abstractions facilitate data exchange, collaboration, and reusability across
different HPGC workflows.

2. Support for multiple programming languages: CyberGIS-Compute currently
provides a Python-based interface for accessing HPC resources. However, to be
a more general HPGC framework, it could support other programming languages
such as R, Java, and C++ to cater to researchers with different programming
backgrounds.

3. Interoperability with External Systems: Enhance interoperability with external
geospatial systems and tools commonly used in the geospatial community. This
can be achieved by implementing standard-compliant connectors or APIs that
allow seamless integration with popular geospatial software packages, spatial
databases, or cloud-based geospatial services. This interoperability enables users
to leverage existing geospatial resources and tools while utilizing the capabilities
of CyberGIS-Compute.

4. Enhanced Workflow Composition and Management: Improve the capabilities for
workflow composition and management within CyberGIS-Compute. This involves
providing intuitive graphical interfaces or domain-specific languages (DSLs) for
defining and visually composing complex geospatial workflows. Additionally,
incorporating features like versioning, error handling, and provenance tracking
can improve the overall robustness and manageability of HPGC workflows.

5. Adaptive Resource Management: Develop adaptive resource management
techniques within the framework to dynamically allocate and manage computing
resources based on the varying demands of geospatial analysis tasks. This
includes dynamic scaling of resources to handle workload fluctuations, intelligent
scheduling algorithms for task allocation, and optimized resource utilization to
improve performance and cost efficiency.

6. Advanced Performance Optimization: Implement advanced performance
optimization techniques tailored specifically for HPGC workflows. This may
involve exploring data partitioning strategies, algorithmic optimizations, and
leveraging advanced computing architectures like GPUs or FPGAs for specific
geospatial analysis tasks. Optimizing the execution of geospatial algorithms can
significantly improve the performance and scalability of the framework.

7. Improved integration with other geospatial tools and frameworks: CyberGIS-
Compute is designed to be integrated with other CyberGIS components, such as
CyberGIS-Jupyter. However, to be a more general HPGC framework, it could also
be integrated with other popular geospatial tools and frameworks such as GDAL,
QGIS, and GeoSpark.

OPEN GEOSPATIAL CONSORTIUM 23-044 61

B.1.1.4. Standard Development from CyberGIS-Compute

The CyberGIS-Compute framework can serve as a valuable starting point for the standardization
of High-Performance Geospatial Computing (HPGC). The following is a preliminary assessment
of its applicability in this context.

1. Addressing Common Challenges: CyberGIS-Compute tackles common challenges
in HPGC, such as scalability, performance, and parallel computing. By providing
a framework that addresses these challenges, it establishes a foundation for
standardizing the fundamental aspects of HPGC workflows. This can help
establish common practices and guidelines across different implementations and
platforms.

2. Geospatial Abstractions: The framework’s geospatial abstractions provide a
standardized way of handling and processing geospatial data. This can contribute
to standardization efforts by promoting consistency and interoperability
in geospatial analysis tasks. By adopting common geospatial abstractions,
developers and researchers can ensure compatibility and portability of their
HPGC workflows.

3. Workflow Orchestration: The support for workflow orchestration in CyberGIS-
Compute is crucial for standardizing HPGC. By defining standardized workflow
structures and interfaces, it becomes easier to exchange and integrate geospatial
workflows across different systems and platforms. This can facilitate collaboration
and interoperability between HPGC implementations.

4. Open-Source and Community Collaboration: The open-source nature of
CyberGIS-Compute encourages community collaboration and contributions. This
can foster a collective effort towards standardization by allowing researchers,
developers, and users to actively participate in shaping the framework’s
development. Open discussions, feedback, and contributions can drive the
identification and establishment of best practices and standards in HPGC.

5. Integration Challenges: While CyberGIS-Compute provides a strong foundation,
integrating it into existing geospatial computing environments and workflows
may require careful consideration. Standardization efforts should consider the
compatibility and integration challenges associated with adopting CyberGIS-
Compute or similar frameworks. Ensuring interoperability with existing tools and
technologies is crucial for broader adoption and acceptance within the geospatial
community.

6. Broad Stakeholder Involvement: To establish effective standards in HPGC, it
is important to involve a broad range of stakeholders, including researchers,
practitioners, industry experts, and standards organizations. CyberGIS-Compute
can serve as a catalyst for bringing these stakeholders together, providing a
starting point for discussions, collaborations, and consensus-building around
standardization.

OPEN GEOSPATIAL CONSORTIUM 23-044 62

CyberGIS-Compute has the potential to serve as a starting point for the standardization
of High-Performance Geospatial Computing. Its focus on addressing common challenges,
providing geospatial abstractions, supporting workflow orchestration, and fostering community
collaboration are essential elements for establishing standards in HPGC. However, integration
challenges and the involvement of a diverse set of stakeholders should be considered to ensure
the practical applicability and acceptance of such standards.

OPEN GEOSPATIAL CONSORTIUM 23-044 63

C

ANNEX C (INFORMATIVE)
HPGC NOTEBOOKS

OPEN GEOSPATIAL CONSORTIUM 23-044 64

C ANNEX C
(INFORMATIVE)
HPGC NOTEBOOKS

NOTE: This annex contains the detailed descriptions of the HPGC notebooks.

C.1. Toy echo process notebook

The Figure C.1 is a simple diagram showing the flow of data between the user, the HPGC API
Python client library, and the HPC cluster for the echo process scenario.

OPEN GEOSPATIAL CONSORTIUM 23-044 65

Figure C.1 — The notebook to execute a toy echo process

The notebook includes the following steps:

1. Preparation: Import the necessary libraries.

2. Create an HPGC LandingPage object: The object allows the user to check the basic
information of the service, including metadata information, API information, API
testing page, conformance information, and list of processes.

3. Create an HPGC Processes object: This object allows the user to list all the
processes and retrieve the description of a specific deployed service.

4. Execution of the echo process: In this case, the Processes object is used to retrieve
the description of the deployed “echo” process and use the description to
form an execution request. A request is created with definitions of necessary
inputs, execution method, outputs, and callback services (if applicable). The

OPEN GEOSPATIAL CONSORTIUM 23-044 66

asynchronous execution approach is selected in the request. The request also
gives the callback service for receiving progress status, success result, and failure
exception. Then, the formed execution request is submitted to the service.

5. Create an HPGC Jobs object: This object allows the user to list all the jobs at their
service, get the status of a job, and get the result of a job.

6. Monitor the job status: There are generally two approaches to monitor the
submitted job, depending on the implementation of the API — Processes service.
One approach is using the job ID returned when submitting the execution
request. The client may keep on pulling the status until the status is changed to
the final step — either a success response or an exception response. Another
approach relies on the service to push back progress status during the execution
of the job request. The service will receive three service callbacks: a progress
callback, a success callback, and a failure callback. The callback services will
receive the status update from the service. Results may be streamed down to the
callback service if the server implements so.

7. Retrieve the job results: The results may be given as links when the success status
is reached. The result for a specific job can be retrieved. In the test echo process,
a result link will be shown in the success response. The result can be used to
retrieve the actual results.

8. Print the job results: Use the link in the success response to retrieve and download
the results. In the case of “echo” process, a simple text results will be returned
along with input parameters. The results can be printed out in this case.

C.2. Ratio of bands from Landsat images notebook

The Figure C.2 is the more complex diagram showing the flow of data between the user, the
HPGC API Python client library, and the HPC cluster for the image algebra scenario. This
diagram includes details such as the different steps involved in the image algebra process and
the different types of data that are exchanged between the different components of the system.
The process package management is also demonstrated which may include operations of deploy,
undeploy, and replace.

OPEN GEOSPATIAL CONSORTIUM 23-044 67

Figure C.2 — The notebook to execute a image algebra process

The notebook includes the following steps.

1. Preparation: Import the necessary libraries.

2. Create an HPGC LandingPage object: Use this entrypoint object to review the basic
information about the service.

3. Authentication to the server: This scenario uses a secure service to interact
with the HPC. Advanced transaction operations (such as Deploy, Replace, and
Undeploy) are also required to be protected. The authorization process is an
Open Identity authorization process.

4. Create a DRU object: DRU stands for operations of deploy, replace, and undeploy
a process. This object interacts with the process’s transaction operations. This
functionality is not in the core of API – Processes Standard. This capability
supports the object allowing the user to list all the processes and retrieve the
description of a specific deployed service.

5. Deploy “BandMath” process: Deploy the process “BandMath” into the service
using the DRU object. The BandMath process is described following the OGC
Application Package schema which must have an execution unit that describes
the process or package. The process description may be included in the Package
definition to provide additional metadata information for the process. In this
scenario, the process is pre-packaged as a singularity based SLURM workload
manager script. Once the process is deployed, it can be used as a normal process.

OPEN GEOSPATIAL CONSORTIUM 23-044 68

6. Create an HPGC Processes object: Use this object to search for a deployed service.
This can be used to verify and find the properly deployed “BandMath” process.

7. Execution of the BandMath process: In this case, the Processes object is used
to retrieve the description of the deployed “BandMath” process and use the
description to form an execution request. A request will be created following the
definitions of necessary inputs, execution method, outputs, and callback services.
The process supports only an asynchronous execution approach. The request will
also give the callback service for receiving progress status, success result, and
failure exception. Then, the complete execution request will be submitted to the
service.

8. Create an HPGC Jobs object: This object allows the user to get information about
executed jobs at the server.

9. Monitor the job status: The status monitoring uses the pull approach against the
returned job ID. The client may keep on pulling the status until the status is
changed to the final step — either a success response or an exception response.

10. Retrieve the job results: The results may be given as links when the success status
is reached. The result for a specific job can be retrieved. In the test BandMath
process, a result link will be shown in the success response to retrieve the final
resulted image. With the current implementation of the service, it can request the
result image to be returned as a static image data or a dynamic geospatial Web
Service such as an OGC Web Map Service (WMS) endpoint.

11. Show the job results: If the data output is requested, the user may use the link
in the success response to retrieve and download the results. The downloaded
image can be imported into a geospatial package for displaying and further
analysis. If the rendered image is requested, the WMS link will be included in the
result response. The WMS service can be embedded as an interactive map in
the notebook using Folium. Folium makes it easy to visualize data that has been
manipulated in Python on an interactive leaflet map.

OPEN GEOSPATIAL CONSORTIUM 23-044 69

BIBLIOGRAPHY

OPEN GEOSPATIAL CONSORTIUM 23-044 70

BIBLIOGRAPHY

NOTE: Place annex material in sequential order and set obligation attribute as
“normative” (default) or “informative” according to the case.

[1] L. Breiman, “Random forests”, Machine learning, 45, 5-32, 2001.

[2] M.A. Hearst, S.T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support vector machines”,
IEEE Intelligent Systems and their applications, 13(4), 18-28, 1998.

[3] R. Vandewalle, “What is CyberGIS-Compute?”, Noveber 9, 2021, URL: https://
cybergisxhub.cigi.illinois.edu/knowledge-base/components/cybergis-compute/what-is-
cybergis-compute/ (last accessed 12/08/2023).

[4] M. P. Armstrong, “High Performance Computing for Geospatial Applications: A
Retrospective View,” in High Performance Computing for Geospatial Applications, vol. 23,
W. Tang and S. Wang, Eds., in Geotechnologies and the Environment, vol. 23. , Cham:
Springer International Publishing, 2020, pp. 9–25. doi: 10.1007/978-3-030-47998-5_2.

[5] “Introduction to Singularity Containers on HPC”, URL: https://centers.hpc.mil/users/
singularity.html (last accessed on 12/8/2023)

[6] Data Sharing With Globus. URL: https://www.globus.org/data-sharing (last accessed:
10/27/2023).

[7] F. Huang, H. Yang, J. Tao, and Q. Zhu, “Universal workflow-based high performance geo-
computation service chain platform,” Big Earth Data, vol. 4, no. 4, pp. 409–434, Oct.
2020, doi: 10.1080/20964471.2020.1776201.

[8] Orfeo ToolBox URL: https://www.orfeo-toolbox.org/

[9] How To Share Data Using Globus. URL: https://docs.globus.org/how-to/share-files/ (last
accessed: 10/27/2023)

[10] Z. Li, “Geospatial Big Data Handling with High Performance Computing: Current
Approaches and Future Directions,” in High Performance Computing for Geospatial
Applications, vol. 23, W. Tang and S. Wang, Eds., in Geotechnologies and the
Environment, vol. 23. , Cham: Springer International Publishing, 2020, pp. 53–76. doi:
10.1007/978-3-030-47998-5_4.

[11] MapServer URL: https://mapserver.org/

[12] OpenAPI Generator. URL: https://github.com/OpenAPITools/openapi-generator

[13] W. Tang and S. Wang, Eds., High performance computing for geospatial applications. in
Geotechnologies and the environment, no. volume 23. Cham, Switzerland: Springer,
2020.

[14] API-Processes. URL: https://ogcapi.ogc.org/processes/

OPEN GEOSPATIAL CONSORTIUM 23-044 71

https://cybergisxhub.cigi.illinois.edu/knowledge-base/components/cybergis-compute/what-is-cybergis-compute/
https://cybergisxhub.cigi.illinois.edu/knowledge-base/components/cybergis-compute/what-is-cybergis-compute/
https://cybergisxhub.cigi.illinois.edu/knowledge-base/components/cybergis-compute/what-is-cybergis-compute/
https://centers.hpc.mil/users/singularity.html
https://centers.hpc.mil/users/singularity.html
https://www.globus.org/data-sharing
https://www.orfeo-toolbox.org/
https://docs.globus.org/how-to/share-files/
https://mapserver.org/
https://github.com/OpenAPITools/openapi-generator
https://ogcapi.ogc.org/processes/

[15] E. Borin, L. M. A. Drummond, J.-L. Gaudiot, A. Melo, M. M. Alves, and P. O. A. Navaux,
High performance computing in clouds: moving applications to a scalable and cost-
effective environment. Cham, Switzerland: Springer, 2023.

[16] Benjamin Pross and Panagiotis (Peter) A. Vretanos (eds) OGC API — Processes — Part
1: Core. OGC 18-062r2, version 1.0.0, 2021-12-20. URL: https://docs.ogc.org/is/18-
062r2/18-062r2.html

[17] Panagiotis (Peter) A. Vretanos and Gérald Fenoy (eds) OGC API — Processes — Part 2:
Deploy, Replace, Undeploy. OGC 20-044, version 1.0. URL: https://docs.ogc.org/DRAFTS/
20-044.html

[18] S. Wang, “Cyberinfrastructure,” Geogr. Inf. Sci. Technol. Body Knowl., vol. 2019, no. Q2,
Apr. 2019, doi: 10.22224/gistbok/2019.2.4.

[19] Typeguard URL: https://typeguard.readthedocs.io/

[20] A. Michels, A. Padmanabhan, Z. Xiao, M. Kotak, F. Baig, and S. Wang, “CyberGIS-
Compute: Middleware for Democratizing Scalable Geocomputation,” SSRN, preprint,
2023. doi: 10.2139/ssrn.4625703.

[21] Pydantic URL: https://github.com/pydantic

[22] S. Abuayeid, and L. Alarabi, “Comparative Analysis of Spark and Ignite for Big Spatial
Data Processing”, International Journal of Advanced Computer Science and Applications,
12(9), 2021.

[23] OpenAPI Validator URL: https://github.com/IBM/openapi-validator

[24] J. Yu, amd M. Sarwat, “Big geospatial data processing made easy: A working guide to
geospark”. In Handbook of Big Geospatial Data (pp. 35-53). Cham: Springer International
Publishing, 2012.

OPEN GEOSPATIAL CONSORTIUM 23-044 72

https://docs.ogc.org/is/18-062r2/18-062r2.html
https://docs.ogc.org/is/18-062r2/18-062r2.html
https://docs.ogc.org/DRAFTS/20-044.html
https://docs.ogc.org/DRAFTS/20-044.html
https://typeguard.readthedocs.io/
https://github.com/pydantic
https://github.com/IBM/openapi-validator

	I. Executive Summary
	II. Keywords
	III. Contributors
	1. Introduction
	2. High Performance Geospatial Computing
	2.1. Definition of High-Performance Geospatial Computing
	2.2. Key Application Drivers
	2.3. HPGC Frameworks
	2.4. Data-Intensive Geospatial Analytics for HPGC
	2.5. Standardization of HPGC-based Data-Intensive Geospatial Analytics

	3. HPGC API
	3.1. HPGC API
	3.1.1. API — Processes
	3.1.2. HPGC Profile of API — Processes

	3.2. HPGC API Client
	3.3. ZOO-Project with HPC support implementation
	3.3.1. Security consideration
	3.3.2. DeployProcess
	3.3.2.1. Additional Parameters for process binding

	3.3.3. Jobs management
	3.3.3.1. Limitation

	4. HPGC API Client Library
	4.1. Introduction
	4.2. Generating the Python Client Library
	4.3. Major Functions of the Client Library
	4.4. Using the Client Library in Python
	4.5. Limitations of the HPGC API Client Library

	5. HPGC Notebook
	5.1. Introduction
	5.2. Jupyter Notebooks
	5.2.1. Toy echo process notebook
	5.2.2. Ratio of bands from Landsat images notebook

	5.3. Limitations of the HPGC Notebooks
	5.4. Future Development

	6. Conclusions
	6.1. Research Questions and Discussions
	6.1.1. The HPGC API based on OGC API — Processes
	6.1.2. Data management and data models for HPGC
	6.1.3. Standard workflows and vulnerability assurance

	6.2. Lessons Learned
	6.3. Future Work
	6.4. Conclusion

	Annex A (normative) Abbreviations/Acronyms
	Annex B (informative) HPGC Frameworks
	B.1. HPGC Frameworks
	B.1.1. CyberGIS-Compute
	B.1.1.1. Architecture
	B.1.1.2. Internal Working
	B.1.1.3. Potential Improvements of CyberGIS-Compute
	B.1.1.4. Standard Development from CyberGIS-Compute

	Annex C (informative) HPGC Notebooks
	C.1. Toy echo process notebook
	C.2. Ratio of bands from Landsat images notebook

	Bibliography
	—————
	List of Tables
	Table 1 — Major steps in HPC and HPGC

	List of Figures
	Figure 1 — Illustration of authentication implementation based on the OpenID Connect (OIDC)
	Figure 2 — Sequence diagram ZOO-Project Deploy Operation
	Figure 3 — Illustration of API implementation for deploying a process
	Figure 4 — Illustration of API implementation for replacing an already deployed process using processID
	Figure 5 — Illustration of API implementation for undeploying (deleting) an already deployed process using processID
	Figure 6 — Sequence diagram ZOO-Project HPC job creation
	Figure 7 — The workflow to generate the HGPC API Python Client
	Figure 8 — Major classes for HGPC API
	Figure B.1 — Architecture of CyberGIS-Compute
	Figure C.1 — The notebook to execute a toy echo process
	Figure C.2 — The notebook to execute a image algebra process

