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I EXECUTIVE SUMMARY
 

This OGC Testbed 19 Engineering Report (ER) details work to develop a foundation for future 
standardization of Machine Learning (ML) models for transfer learning. The work is based on 
previous OGC ML activities and has focused on evaluating the status quo of transfer learning, 
metadata implications for geo-ML applications of transfer learning, and general questions of 
sharing and re-use.

The scope is geospatial, especially Earth Observation (EO) applications, with Testbed participants 
having considered transferring models between software applications, application domains, 
geographical locations, and synthetic datasets to real EO data. GeoLabs developed an end-to-
end framework based on web-services architecture for training, fine-tuning based on a pre-
trained model, visualizing model graphs, and inferencing. George Mason University proposed 
spatiotemporally transferable learning algorithms and a temporal learning strategy that would 
maximally transfer label data and models from the US case to foreign countries. Pixalytics 
tested transfer learning by freezing all layers except the bottom layer of a Neural Network 
model, then trained it to detect a specific category of waste plastic. They also took the Meta 
AI Segment Anything Model, which was developed for machine vision, and applied approaches 
where hyperspectral data were used. Rendered.ai undertook experiments to understand which 
synthetic dataset approach yielded the best results before using these for model backbone 
training — used to fine-tune a COCO model backbone with no real data used in training.

In addition to these experiments, the participants reviewed and provided feedback on research 
questions outlined within the call for participation. The answers have been formulated around 
the FAIR principles, considering the description of an ML model to support findability, provide 
access, and support interoperability. The participants also questioned how an ML Model should 
be described to enable efficient re-use through transfer learning applications. This last section 
considered taxonomy, quality measures, the relationship to the training data, and the model’s 
performance envelope and metrics.

In the Summary & Recommendations section, the ER reviews the findings and makes 
recommendations about the next steps in terms of both the experiments conducted and broader 
implications for OGC. Coordination is needed to ensure that the work of the OGC standard 
working groups brings together the different elements needed to store and share ML models. A 
focus on metadata is critical to allow users to understand what is available and applicable to the 
users. In addition, standardization of naming will support interoperability.

I I KEYWORDS
 

The following are keywords to be used by search engines and document catalogues.

Machine Learning, Transfer Learning, Earth Observation
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IV ABSTRACT
 

The OGC Testbed 19 initiative explored six tasks including this task focused on “Machine 
Learning: Transfer Learning for Geospatial Applications.”

This OGC Testbed 19 Engineering Report (ER) documents work to develop the foundation 
for future standardization of Machine Learning models for transfer learning within geospatial, 
especially Earth Observation, applications. The ER reviews the findings of transfer learning 
experiments and makes recommendations about the next steps in terms of both the 
experiments conducted and broader implications for OGC.
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1 INTRODUCTION
 

New and revolutionary Artificial Intelligence (AI) and Machine Learning (ML) algorithms 
developed over the past ten years have great potential to advance the processing and analysis 
of Earth Observation (EO) data while comprehensive standards for this technology have yet 
to emerge. However, the Open Geospatial Consortium (OGC) has investigated opportunities 
in ML standards for EO such as the ML threads in Testbeds 14, 15, and 16. Further, the OGC 
TrainingDML-AI (TDML) Standards Working Group developed the Training Data Markup 
Language for Artificial Intelligence (TrainingDML-AI) Part 1: Conceptual Model. The SWG also 
provided analyses and recommendations of the Standard and next steps in the TestBed-18 ML 
thread. Testbed 19 builds on these previous efforts.

1.1. Introduction to Transfer Learning
 

Transfer learning is a technique in ML where the knowledge learned from a task is re-used to 
boost performance and reduce costs on a related task.

Among the most productive methods in the application of ML to new domains has been the 
re-use of existing ML solutions for new problems. This is where a subset of the Domain Model 
produced by application of ML in a related domain is taken as the starting point for addressing 
the new problem. The advantage of this approach is that the investment in the previous ML task, 
which can be enormous both in terms of the Training Dataset (TDS) generation and computing 
power required to refine the model, can be repeatedly made to pay off. Therefore, reuse has 
become very popular in deep learning because a reused deep neural network can then be 
trained with comparatively little data.

The ground-laying work of Pan and Yang (2010) characterizes transfer learning across Source 
and Target Domains of application. A Domain is defined as a pair consisting of a Feature Space
X = {x1, …, xn} and a Task T defined over the Domain is a pair consisting of a set of Labels Y 
and an objective function f(·). The objective function f(·) is learned from a TDS consisting 
of pairings of Features and Labels {xi, yj} where xi is a member of X and yj is a member of Y. 
The problem of learning f(xi) can equivalently be considered as the problem of discovering the 
conditional probability P(yi|xi) when given an input xi.

If we focus on Deep Learning, then f(·) is the inferencing capability that results from the 
discovery of discriminating Features within the Feature Space expressible in the layered neural 
network. The discovery is achieved through the learning process, the back-propagation of the 
(costs of) successful and unsuccessful assignments of Labels to instances of the Training Data 
Set.

We consider two domains, a Source Domain and a Target Domain, for which we are provided 
Training Data Sets DS={(xS1, yS1),…, (xSn, ySn)} and DT={(xT1, yT1),…, (xTm, yTm)}
respectively. Then, following from Pan and Yang (2010), transfer learning can be defined as the 
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case where DS <> DT or TS <> TT but the previous learning of fS(.) from DS nonetheless helps 
improve the learning of fT(·) from DT.

Note that the restricting condition implies, from DS <> DT, that either XS <> XT or PS(X) <> 
PT(X), while the condition TS <> TT implies that either YS <> YT or, under the equivalency 
noted above, that PS(Y|X) <> PT(Y|X). That is, there is some difference between the Features 
of the two Tasks, or if the Features are the same, then between the distribution of the Feature 
values with respect to the Labels. For instance, a Source Domain might include a TDS of the 
labels “Corn,” “Soy,” and “Other” associated with a patch of three-band (2, 3, and 4) Landsat 
imagery over the US denoted by some geometry within the patches (the Source Data). In 
contrast, the Target may include a TDS of the labels “Wheat,” “Alfalfa,” and “Other” for the same 
three-band Landsat imagery acquired over Poland.

As illustrated in Figure 1, transfer learning algorithms pass learned knowledge from one model 
to fine-tune another model on a different dataset.

Figure 1 — Transfer Learning: the passing of knowledge from one Domain to another.

It is useful to distinguish transfer learning from related ML problems; Zhuang et al. (2020) as 
follows.

• Semi-Supervised Learning: Transfer Learning can be seen as related to Semi-Supervised 
Learning in its marshalling of examples in order to learn the inference function f(·), 
except that the distribution of Features relative to Labels is the same for every Task 
instance (in this case, each episode of “masking” that occurs in the Unsupervised Learning 
exercise).

• MultiTask Learning: Similarly, transfer learning closely resembles MultiTask learning. 
The difference in this case is that in MultiTask learning, the Source and Target Labels are 
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invoked within the same learning episode, versus happening strictly sequentially as in 
transfer learning. The Source and Target Data are identical, and it is the Source and Target 
Models that are intended to evolve – they, in principle, are independent bodies of learned 
knowledge (i.e., as independently-applicable inference capabilities) even though they share 
the same Feature Space and, potentially, many of the same Features.

• MultiView Learning: The Label set may be identical, but the Source and Target Data may 
be different, as in learning to distinguish an object from many views or from multimodal 
data. In this case, the Features might be quite distinct, though they indicate the same 
Target object.

The transfer learning literature identifies several possible variations on the transfer of 
knowledge within the general framework described above. Given a source domain, the target 
domain may have different labels, or different distributions, or different target data, as well as 
exhibiting distinctions arising from the specifics of their application, e.g., from sensor modalities 
such as video sequences versus worn sensors of physiological state, which would set transfer 
learning in a MultiView learning context. However, the literature seems to have converged on a 
classification of transfer learning techniques reflecting the following four categories as follows.

1. Instance Transfer, in which the differential weighing of training instances drives 
the learning process.

2. Feature Representation Transfer, in which learning includes Feature Discovery, 
but in which that discovery is given a head start by starting from the feature set 
previously discovered for a related Task.

3. Parameter Transfer, in which the learning algorithms exploit the hyperparameters 
of a related learning problem to guide the setting of its own hyperparameters.

4. Relational Knowledge Transfer, in which relations, e.g., rules of operation, are 
learned in one context and applied in a related one.

The work reflected in this Engineering Report (ER) is focused on point 2, Feature Representation 
Transfer.

The literature reflects three main research issues: what to transfer, how to transfer, and when to 
transfer.

a) What to Transfer will depend on the method. The literature suggests four 
categories ….

b) How to Transfer will depend on the method. The focus here is on Deep Learning.

c) When to Transfer because the refinement process may lead to worsening 
behavior in the original application. However, there are reports in the literature 
that suggest transfer learning always leads to improvement over start-from-
scratch (Wang et al 2014).

This ER presumes points c and b that transfer learning leads to improvements and are exhibited 
by Deep Learning Neural Networks methods that are the focus. Also, point c is covered as 
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transfer learning is applied to spatio-temporal features and/or spatio-temporal metadata from 
one application to another, e.g., to support cases where there is a reason to believe the features 
discovered for one Task may be of use in the Target task, and where metadata describing one 
Task suggests the Model is suitable for the Target Task.

Among the most productive methods in applying ML to new domains has been the reuse of 
existing ML solutions for new problems, where a subset of the Domain Model produced by ML 
in a related domain is taken as the starting point for the new problem; see Figure 2.

Figure 2 — Transfer Learning: reuse of machine learning models.

The advantage of this approach is that the investment in the previous ML task, which can be 
enormous in terms of the TDS generation and computing power required to refine the model, 
can be made to pay off repeatedly. Therefore, it has become very popular in deep learning 
because a reused deep neural network can be trained with comparatively little data.

The TDML Standard considers the tasks to which ML might be applied as follows.

• Scene Classification — Classifying a scene image to one of a set of predefined scene 
categories.

• Object Detection — A computer vision application that detects instances of semantic 
objects of a certain class.

• Semantic Segmentation — A common EO application that involves assigning a class label 
to every pixel in the image.

• Change Detection — A computer vision/EO task that involves detecting changes in an 
image or video sequence over time.

• 3D Model Reconstruction — in computer vision and computer graphics, 3D reconstruction 
is the process of capturing the shape and appearance of real objects.

In this ER, the focus is primarily on the use of ML for Object Detection and Semantic 
Segmentation using transfer learning. However, the Testbed participants have also considered 
other forms of transfer learning as follows.

• Transferring models between software applications — The strong need for alignment has 
meant that, in practice, transfer learning has historically almost always been applied only 
within a single ML architecture, such as between earlier and later instances of TensorFlow. 
However, having cross-architecture transfer learning available, for instance between 
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instances of TensorFlow and PyTorch would be very beneficial. This topic explores the 
possibility of the case of geospatial applications, but considers wider AI standards such 
as the Open Neural Network Exchange (ONNX). ONNX is an open standard for ML 
interoperability.

• Transferring models between application domains — This scenario builds on the Deep 
Learning applications of transfer learning, but considers transferring a model to different 
input dataset without retraining all or part of it.

• Transferring models between geographical locations — This scenario has explored 
the feasibility of the field-level in-season crop mapping of foreign countries by using 
spatiotemporal transfer learning algorithms.

• Transferring models from synthetic datasets to real EO data — In this case, transfer 
learning follows the standard process of reusing, also called freezing, part of a trained 
model backbone to then combine it with additional model layers that are trained on a new 
TDS. However, the difference is that the origin TDS will be synthetic while the transfer 
learning TDS is real EO data.

The experiments’ scope is geospatial use cases, particularly EO applications. In terms of future 
OGC standards development, further work will need to be undertaken to examine broader 
geospatial applicability.

1.2. Testbed-19 Machine Learning Task
 

A major goal of this effort is to ascertain the degree to which transfer learning may be brought 
into an OGC standards regime. Re-use depends on two cases:

• how the model is stored; and

• how the required ancillary data and the released information can be understood by the 
user on how the model was constructed/trained.

Both cases are required to determine the best reuse approach.

When transferring a model between applications, re-use is dependent on the new ML 
application incorporating the results of previous ML applications. Therefore, the ML architecture 
of the earlier model has to be aligned with that of the later ML application. Part of the work 
in this Testbed-19 was to determine the data and information elements needed for transfer 
learning to succeed in the EO domain. As such, questions include the following.

• How much information about the provenance of the ML model’s TDS needs to be 
available?

• Is it important to have a representation of what is in-distribution versus what is out-of-
distribution for the ML model?

OPEN GEOSPATIAL CONSORTIUM 23-033 13

https://onnx.ai/


• Do quality measures need to be conveyed for transfer learning to be effectively 
encouraged in the community?

• Are other elements required to support a standard regime for building out and entering 
new transfer learning-based capabilities into the marketplace?

In addition, a goal of the Testbed-18 ML thread was to develop the foundation for future 
standardization of TDS for EO applications. Therefore, a goal of the Testbed-19 ML task 
was to develop the foundation for future standardization of ML models for transfer learning 
within geospatial, and especially EO, applications. The task evaluated the status quo of 
transfer learning, metadata implications for geo-ML applications of transfer learning, and 
general questions of sharing and re-use. Several initiatives, such as ONNX, have developed 
implementations that could be used for future standardization work.

As an OGC effort, this Testbed activity is distinct from general applications of AI/ML in that the 
focus is primarily geospatial ML applications. However, findings and feedback from this Testbed 
activity may support the wider community.

OPEN GEOSPATIAL CONSORTIUM 23-033 14



2

OVERVIEW OF THE
MACHINE LEARNING
MODELS AND DATASETS
BEING TESTED
 

OPEN GEOSPATIAL CONSORTIUM 23-033 15



2 OVERVIEW OF THE MACHINE LEARNING
MODELS AND DATASETS BEING TESTED
 

2.1. GeoLabs
 

2.1.1. Dataset

2.1.1.1. Introduction

The FLAIR (French Land Use/Land Cover Artificial Intelligence Recognition) dataset is a 
comprehensive and high-quality collection of labeled satellite imagery aimed at advancing land 
cover classification and geospatial analysis tasks. FLAIR was developed and maintained by the 
French National Institute of Geographic and Forest Information (IGN) and serves as a valuable 
resource for researchers, data scientists, and practitioners in the field of remote sensing and 
geospatial analysis: Garioud et al (2022).

2.1.1.2. Dataset Overview

The FLAIR dataset provides a diverse range of satellite imagery covering various regions of 
France.

Figures 3 and 4 show an image and labels sample of the FLAIR dataset. It encompasses both 
rural and urban areas, capturing the intricate details of land use and land cover across the 
country. The dataset offers multi-temporal imagery with different spectral bands, resolutions, 
and acquisition dates, enabling the exploration of temporal dynamics and changes in land cover.
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Figure 3 — FLAIR dataset image.

Figure 4 — FLAIR dataset labels.

2.1.1.3. Key Features and Statistics

1. Spatial Coverage: The FLAIR dataset covers the entire country of France, 
including overseas territories. It provides a representative sample of land cover 
classes found in different geographic regions.

2. Spectral Bands: The dataset includes satellite imagery captured across multiple 
spectral bands, such as visible, near-infrared, and short-wave infrared. This 
spectral diversity supports the extraction of rich and meaningful information 
related to land cover and land use patterns.

3. Temporal Resolution: FLAIR offers multi-temporal imagery, supporting the 
analysis of land cover changes over time. The dataset comprises images acquired 

OPEN GEOSPATIAL CONSORTIUM 23-033 17



at different intervals, facilitating the examination of seasonal variations and long-
term trends.

4. Annotation and Labels: The FLAIR dataset provides pixel-level annotation for 
land cover classes, enabling supervised Machine Learning (ML) approaches for 
land cover classification. The dataset includes a predefined set of land cover 
categories, which allows for consistency and comparability in analyses.

5. Dataset Size: FLAIR consists of a substantial amount of imagery data, providing 
a wide range of training and testing samples for land cover classification models. 
The dataset size allows for robust model training and evaluation.

2.1.1.4. Applications

The FLAIR dataset is designed to facilitate a variety of applications related to land cover 
classification, geospatial analysis, and environmental monitoring. Some potential applications 
include the following.

1. Land Cover Classification: The dataset serves as a valuable resource for 
developing and evaluating land cover classification models. Researchers and 
practitioners can leverage FLAIR to train and test ML algorithms for accurately 
mapping and monitoring land cover across France.

2. Land Use Planning: FLAIR can support land use planning efforts by providing 
detailed and up-to-date information on land cover patterns. It can assist in 
identifying suitable areas for specific land uses, optimizing resource allocation, 
and informing policy decisions related to land management.

2.1.1.5. Conclusion

The FLAIR dataset, developed by IGN, offers a rich collection of labeled satellite imagery 
covering France. With its comprehensive spatial coverage, multi-temporal data, and pixel-level 
annotation, FLAIR provides a valuable resource for land cover classification, change detection, 
and geospatial analysis tasks. The dataset’s application potential extends to various domains, 
including environmental monitoring, land use planning, and impact assessment. The FLAIR 
dataset contributes to advancing research and applications in remote sensing and geospatial 
analysis, fostering a deeper understanding of land cover dynamics and supporting evidence-
based decision-making. For the Testbed-19 ML Transfer Learning for software implementation 
task, the FLAIR dataset was used to train TensorFlow and PyTorch based models and export 
them as an ONNX model for inferencing.

2.1.2. Model description

For this experiment and demo, the following models have been chosen to be fine-tuned on the 
selected dataset.
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1. The FLAIR 1 AI Challenge Baseline Model: This model is developed for the 
FLAIR 1 AI Challenge. The challenge focuses on building an AI system to classify 
French land cover using high-resolution satellite imagery. The baseline model 
provides a starting point and is based on U-Net architecture with a pre-trained 
ResNet34 encoder. It has about 24.4M parameters and it is implemented using 
the segmentation-models-pytorch library.

2. Another model is based on the Orfeo ToolBox (OTB) and TensorFlow, which 
combines the capabilities of OTB’s geospatial image processing and analysis with 
the power of deep learning using TensorFlow.

3. Segment Anything Model (SAM) — A Foundation Model (FM) for predicting high-
quality object masks based on input prompts such as points, bounding boxes, etc. 
SAM is capable of predicting masks for objects in an image as well as for entire 
image.

2.1.2.1. Learning-as-a-Service architecture using ZOO-Project:

The Learning-as-a-service (LAAS) architecture builds on top of the ZOO-Project for performing 
tasks related to ML and deep learning as a service. These tasks include training, visualizing 
model catalog and model architectures, or deploying a machine or deep learning model as a 
web service for inferencing. The LAAS approach follows a structured framework with defined 
components and interactions. The LAAS implementation builds on top of the ZOO-Project, and 
below is a detailed explanation of the associated components:

1. ZOO-Project Core Components:

a) ZOO Kernel: The ZOO-Project’s core component provides the runtime 
environment and orchestrates the deployment of web services based on 
the OGC API — Processes (Part 1 Standard and the Part 2 and Part 3 draft 
standards). The kernel manages client-server communication, handles 
requests, and coordinates the execution of processes.

b) ZOO Services: These are individual units encapsulating deep learning 
models as web services. Each ZOO service represents a specific deep 
learning model and its associated functionalities.

2. Model Integration and Configuration:

a) Deep Learning Model Integration: The deep learning model is integrated 
into the ZOO-Project by developing a ZOO service incorporating the 
model’s implementation and functionalities. The service is written using 
an appropriate programming language compatible with the deep learning 
framework, such as Python with TensorFlow or PyTorch.

b) Configuration Definition: The ZOO-Project offers a configuration 
mechanism to define the input parameters, outputs, and other metadata 
associated with the deep learning model service. This configuration 

OPEN GEOSPATIAL CONSORTIUM 23-033 19

https://docs.google.com/document/d/1k2NEwYSE0fzOSxstsgYtl6zLGBOriq6Lf11bKM1GFv8/edit#
https://doi.org/10.48550/arXiv.2304.02643
http://www.zoo-project.org/


specifies the expected input format, such as image dimensions or data 
types, as well as any additional parameters required for model inference.

3. Data Preprocessing:

a) Preprocessing Steps: Within the ZOO service, data preprocessing steps 
are implemented to prepare the input data for deep learning model 
inference. These steps may include resizing, normalization, or other 
transformations required to appropriately preprocess the input data.

4. Model Inference:

a) Model Loading and Execution: The ZOO service incorporates the code for 
loading the trained deep learning model. It performs model inference by 
first converting the model to an interoperable ONNX format by passing 
the preprocessed input data through the ONNX model and obtaining the 
output predictions or results.

5. Web Service Deployment:

a) ZOO Kernel Operation: The ZOO-Project’s ZOO Kernel acts as the core 
component for deploying the deep learning model service. It handles the 
reception of client requests, invokes the model inference process within 
the respective ZOO service, and returns the results to the clients in a 
standardized format.

b) Scalability and Performance: The ZOO-Project architecture leverages 
underlying web server platforms, such as Apache HTTP Server or Nginx, 
to ensure scalability and performance. The web server can be configured 
to handle multiple concurrent requests, enabling the deep learning model 
service to effectively serve many users.

6. Interoperability and Extensibility:

a) Integration of External Resources: The ZOO-Project architecture supports 
interoperability by facilitating the integration of external resources and 
capabilities into the deep learning model service. This approach allows 
the service to utilize additional geospatial or non-geospatial data sources, 
libraries, or tools to enhance its functionality.

b) Extensibility: The ZOO-Project framework can be extended to 
incorporate new functionalities or integrate with existing geospatial or 
deep learning libraries, enabling the deep learning model service to be 
enhanced or customized as per specific requirements.

In summary, the LAAS approach provides a formal framework for deploying deep learning 
models and their associated operations as web services. It includes core components for runtime 
management, integration of deep learning models, data preprocessing, model inference, and web 
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service deployment. The architecture ensures interoperability, scalability, and performance while 
allowing for extensibility and integration with external resources.

2.1.3. Components of the Learning-as-a-Service Engine

The ML learning-as-a-service primarily comprises a ZOO-service and the NVIDIA Triton 
Inference Engine for inferencing. The Triton inference engine is composed of an inference server 
and a client. The components of the Triton inference engine can be described as follows.

1. Triton Inference Service Engine: The main component responsible for managing 
and serving ML models for inference.

2. Model Repository: Stores ML models in a central repository for easy access.

3. Model Loader: Loads ML models from the Model Repository into memory for 
inference.

4. Inference Server: Handles incoming inference requests, manages model versions, 
and communicates with the Inference Scheduler.

5. Inference Scheduler: Schedules and manages the execution of inference requests 
across multiple Inference Backends.

6. Inference Backend: Represents the actual hardware or software accelerator (e.g., 
GPU, CPU) used for inference. Multiple backends can be configured for different 
hardware options.

The following steps explain the workflow for inferencing using the Triton Inference server within 
the ZOO Project.

1. Model Preparation: Prepare the ML model for the inferencing to be used within 
the ZOO Project. This preparation typically involves training or obtaining a pre-
trained model for the specific task.

2. Model Integration: Integrate the ML model into the ZOO Project’s framework. 
The ZOO Project allows both the definition and configuration of custom 
processing services. In this case, the ZOO Project is configured to work with the 
proposed deep learning model.

3. Service Configuration: Define a custom processing service within the ZOO 
Project configuration. This service should specify how to invoke a ML model for 
object detection. Configuration files and metadata should be set up to describe 
the input and output parameters of the service.

4. Triton Inference Server Integration: The Triton inference server can be integrated 
into the custom ZOO Project service. This integration sends inference requests to 
Triton for model execution.
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5. Client Request: Clients send requests to the ZOO Project’s WPS services. 
These requests include the necessary input data for deep learning-based model 
execution, such as an image or video frame.

6. ZOO Project Service Execution: The ZOO Project processes the client’s request, 
which may involve invoking the Triton Inference Server if integrated. It passes the 
input data to the configured object detection service.

7. Model Inference: If the Triton Inference Server is used, it performs object 
detection based on the input data and the configured model. If not, the ZOO 
Project service directly processes the request using the specified integrated 
model.

8. Response to Client: The ZOO Project or Triton generates the results and sends 
them as part of the response to the client. For example, for object detection, 
bounding boxes, class labels, and confidence scores are passed as output.

In this context, the ZOO Project serves as the middleware for exposing object detection 
models as web processing services, making them accessible to clients over the web while Triton 
Inference Server can be used for efficient model inference if desired. The overall workflow can 
be illustrated as shown in Figure 5.

Figure 5 — Overall workflow.
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2.2. George Mason University
 

2.2.1. Background

The major goal of this aspect of the OGC Testbed-19 – Transfer Learning for Geospatial 
Application experiment was to explore the feasibility of the field-level in-season crop mapping 
of countries outside of the United States by spatiotemporal transfer learning algorithms. As a 
result, the following objectives and activities were specified.

1. Development of the transfer learning algorithm and strategy: The project will 
accomplish the objective of developing a transfer learning algorithm and strategy 
which will be achieved by training models with U.S. data and applying the trained 
algorithm to agricultural regions in Brazil and Canada. By doing so, the project 
will demonstrate the potential of the transfer learning approach in different 
geographic contexts.

2. Exploration of image segmentation methods: The project will explore image 
segmentation methods to automatically extract cropland fields from remote 
sensing images. This objective aims to improve the accuracy and efficiency of in-
season crop mapping by accurately delineating the boundaries of cropland fields.

3. Enhancement of in-season mapping results: The project will integrate the 
Segment Anything Model with the transfer learning model to enhance the in-
season mapping results. This integration is expected to effectively remove noise 
from the mapping results and lead to a significant improvement in accuracy.

The success of the experiment will have several significant impacts as follows.

1. The in-season crop map for countries outside of the United States can be 
produced automatically from satellite images (e.g., Landsat data or Sentinel-2 
data) during the early growing season, which is valuable for agricultural and food 
security decision makers.

2. The in-season crop maps can be used for the early estimation of crop yield in the 
other grain exporters. The early estimation data, especially for those countries 
with different growing seasons, can provide timely decision support and guidance 
for farming.

3. Although this project specifically deals with in-season crop mapping, the 
transferable ML model developed in this project will be potentially applicable to 
spatiotemporal transfer learning issues in other domains.
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2.2.2. Data

2.2.2.1. Cropland Data Layer

The Cropland Data Layer (CDL) data product is an annual crop-specific agricultural land use map 
produced by the US Department of Agriculture (USDA) National Agricultural Statistics Service. 
This map covers the entire Continental US (CONUS) at 30-meter spatial resolution from 2008 
to the present and some states from 1997 to 2007. Table 1 summarizes the information about 
CDL data and its derived data products. The cropland layer provides over 140 land cover classes 
with around 95% accuracy for major crop types. The crop frequency layer identifies the specific 
planting frequency of four major crop types across the CONUS, corn, cotton, soybeans, and 
wheat, based on CDL from 2008 to the present. The confidence layer represents the percentage 
(0-100) of confidence for each cropland pixel (Liu et al., 2004). The cultivated layer is a crop 
mask map with pixels that are identified as cultivated in at least two out of the most recent five 
years of CDL data.

 
Table 1 — Summary of CDL and its derived data products.

LAYER AVAILABILITY COVERAGE
SPATIAL 
RESOLUTION

Cropland Layer
1997 to 
present

CONUS (2008-2020) Some states (1997-
2008)

30-meter

Crop Frequency 
Layer

2008 to 
present

CONUS 30-meter

Confidence Layer
2008 to 
present

CONUS 30-meter

Cultivated Layer
2013 to 
present

CONUS 30-meter

2.2.2.2. Satellite Image Data

The satellite images explored in this experiment are derived from the two most widely accessible 
moderate-to-high spatial resolution data sets: Landsat-8 and Sentinel-2. Landsat is a joint 
program of the USGS and NASA, which has been observing the Earth at a 30-m resolution in 
a 16-day repeat cycle continuously from 1972 to the present. As the eighth satellite in the 
Landsat program, Landsat-8 was launched in February 2013. It carries the Operational Land 
Imager (OLI) and Thermal Infrared Sensor (TIRS) instruments providing moderate-resolution 
imagery from 15-100 m. Table 2 lists the spectral band specification of the Landsat-8 sensors.

 

OPEN GEOSPATIAL CONSORTIUM 23-033 24



Table 2 — Landsat-8 spectral band specifications.

BAND DESCRIPTION WAVELENGTH RESOLUTION SENSOR

1 Coastal aerosol 0.43-0.45 µm 30 meters OLI

2 Blue 0.45-0.51 µm 30 meters OLI

3 Green 0.53-0.59 µm 30 meters OLI

4 Red 0.64-0.67 µm 30 meters OLI

5 Near Infrared (NIR) 0.85-0.88 µm 30 meters OLI

6 Shortwave Infrared (SWIR) 1 1.57-1.65 µm 30 meters OLI

7 Shortwave Infrared (SWIR) 2 2.11-2.29 µm 30 meters OLI

8 Panchromatic 0.50-0.68 µm 15 meters OLI

9 Cirrus 1.36-1.38 µm 30 meters OLI

10 Thermal Infrared (TIRS) 1 10.60-11.19 µm 100 meters TIRS

11 Thermal Infrared (TIRS) 2 11.50-12.51 µm 100 meters TIRS

The Copernicus Sentinel-2 mission is operated by the European Space Agency (ESA). Sentinel-2 
consists of two twin polar-orbiting satellites (Sentinel-2A and Sentinel-2B). The Sentinel-2A 
satellite was launched in June 2015, and the Sentinel-2B was launched in March 2017. They 
provide the higher temporal resolution of revisiting every five days under the same viewing 
angles and a higher spatial resolution of 10-60 m. The main instrument of the Sentinel-2 
mission, the MultiSpectral Instrument (MSI), covers 13 spectral bands ranging from visible 
and near-infrared to shortwave infrared wavelengths. Table 3 summarizes the spectral band 
specification of the Sentinel-2 sensor.

 
Table 3 — Sentinel-2 spectral band specifications.

BAND DESCRIPTION WAVELENGTH RESOLUTION SENSOR

1 Coastal aerosol 443.9nm (S2A) / 442.3nm (S2B) 60 meters MSI

2 Blue 496.6nm (S2A) / 492.1nm (S2B) 10 meters MSI

3 Green 560nm (S2A) / 559nm (S2B) 10 meters MSI
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BAND DESCRIPTION WAVELENGTH RESOLUTION SENSOR

4 Red 664.5nm (S2A) / 665nm (S2B) 10 meters MSI

5 Vegetation Red Edge 1 703.9nm (S2A) / 703.8nm (S2B) 20 meters MSI

6 Vegetation Red Edge 2 740.2nm (S2A) / 739.1nm (S2B) 20 meters MSI

7 Vegetation Red Edge 3 782.5nm (S2A) / 779.7nm (S2B) 20 meters MSI

8 Near infrared (NIR) 835.1nm (S2A) / 833nm (S2B) 10 meters MSI

8A Vegetation Red Edge 4 864.8nm (S2A) / 864nm (S2B) 20 meters MSI

9 Water vapour 945nm (S2A) / 943.2nm (S2B) 60 meters MSI

10 Shortwave Infrared / Cirrus 1373.5nm (S2A) / 1376.9nm (S2B) 60 meters MSI

11 Shortwave Infrared (SWIR) 1 1613.7nm (S2A) / 1610.4nm (S2B) 20 meters MSI

12 Shortwave Infrared (SWIR) 2 2202.4nm (S2A) / 2185.7nm (S2B) 20 meters MSI

There are many ways to access Landsat data and Sentinel-2 data. The USGS Earth Explorer
is the official source for downloading Landsat data. The ESA Copernicus Open Access Hub
provides complete and open access to Sentinel-2 data. The GEE data catalog has archived 
diverse standardized geospatial data sets, including the CDL, Landsat-8, and Sentinel-2 data.

2.2.3. Model

2.2.3.1. Crop Type Prediction

Trusted pixels refer to pixels predicted from the historical CDL data with high confidence in the 
current year’s crop type. As a practical approach for discovering intricate patterns and structures 
in high-dimensional data, ML has been widely used in Land Use Land Cover (LULC) studies. 
The production of trusted pixels is based on the crop sequence pattern that is automatically 
recognized from the CDL time series. To train the crop sequence model, an ANN model was 
integrated with the in-season mapping workflow, which has proven effective in predicting the 
spatial distribution of major crop types (Zhang et al., 2019a).

Figure 6 illustrates the process of trusted pixel prediction. First, the historical CDL time 
series was converted into an image stack with crop sequence features for all pixels. Each 
crop sequence feature is a one-dimensional array containing the pixel-level time series of 
historical CDL. Second, each crop sequence feature is fed into the prediction model to predict 
the following year’s crop type of the corresponding pixel. The ANN model for trusted pixel 
prediction has the fully-connected multilayer perceptron (MLP) structure, which consists of 
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one input layer, five hidden layers, and one output layer. Each input neuron represents each 
crop type value of the crop sequence feature. The output layer of the neural network used 
the SoftMax function to calculate the probability value of three classes (corn, soybeans, or 
others). The crop type of the corresponding pixel is categorized as a class with the highest 
probability value. The final output of the prediction model is a prediction map of crop cover and 
its probability map. By masking the high-confident pixels (>90%) on the prediction map, a map 
of trusted pixels is generated. If the sequence is like a regular pattern, there is a high chance 
that the pixel would be classified as a trusted pixel (e.g., corn 90%, soybeans 8%, others 2%). If 
a sequence cannot be recognized by the well-trained model, the probability of each class could 
be more even (e.g., corn 45%, soybeans 30%, others 25%) and it would be classified as a non-
trusted pixel.

Figure 6 — Predicting trusted pixels from historical CDL time series using ANN.

The training data set was constructed with three recursive subsets, each with an 8-year moving 
window. While producing trusted pixels for 2019, the ANN model is trained using sub-training 
sets of 2010–2017 CDL labeled with 2018 CDL, 2009–2016 CDL labeled with 2017 CDL, and 
2008–2015 CDL labeled with 2016 CDL. This design can efficiently extend the training data set 
and allows the neural network to recognize crop sequence labels for the last three consecutive 
years. To convert features into the readable form of neural network, the training data set was 
flattened to a structured 2-D table. Each row represents a sample of a sequence of pixel-level 
crop type features labeled with the corresponding pixel in the label set. For example, a training 
sample of pixel that follows the corn-soybean rotation pattern will be represented as “1, 5, 1, 5, 
1, 5, 1, 5” labeling with “1” or “5, 1, 5, 1, 5, 1, 5, 5” labeling with “5,” where “1” refers to corn and 
“5” refers to soybeans (the full class table of CDL data is available at Appendix). Although the 
CDL data has been available since 1997, the training set was not built with this long CDL time 
series because the quality of the early-year CDL varies across regions, and the coverage of CDL 
is incomplete before 2008, which may significantly affect the accuracy of the derived ML model.

To train a robust prediction model, the training set should provide abundant samples with 
diverse crop sequence features. Based on the similarity of agricultural characteristics and 
environment, USDA NASS divided each U.S. state into several Agricultural Statistics Districts 
(ASDs). To make sure the crop sequence features of the prediction model are correct, ML 
models need to be trained for each ASD and then trusted pixel mapping has to be used ASD by 
ASD. In this way, the well-trained neural network would recognize the specific crop sequence 
information for the corresponding ASD.
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2.2.3.2. Crop Type Classification

Figure 7 shows the procedure of in-season crop type classification using satellite images and 
trusted pixels. The input data structure of the classification model is an image stack with both 
spectral and temporal information. The quantity of satellite images used for assembling image 
stack depends on the availability of cloud-free satellite images within the growing season. Based 
on the spatial distribution of trusted pixels, the training samples are automatically labeled on 
the image stack. The trusted pixel-based training samples can be applied to diverse pixel-based 
classifiers. This experiment applied the MLP-based ANN as the classifier which has a similar 
structure to the trusted pixel prediction model. Each input neuron represents the value in the 
one-dimensional band feature of the corresponding pixel. Finally, an in-season crop cover map 
can be generated by applying the trained classification model on the full image. The geography, 
season starting, and temporal collection of satellite images may significantly vary among the 
different scenes over a large area.

Figure 7 — In-season crop type classification using 
multi-temporal satellite image stack and trusted pixels.

2.3. Pixalytics
 

2.3.1. Plastics ML Model

The Plastics ML model is not open-source, but the underlying research is documented in a peer-
reviewed paper. It was designed to detect and map plastic waste in the environment, supporting 
clean-up. This has included mapping marine plastics in Indonesia and detecting tires in several 
countries to support recycling efforts.

A ML-based classifier was developed to run on Copernicus Sentinel-1 and -2 data. To support 
the training and validation, a dataset was created with terrestrial and aquatic cases by manually 
digitizing varying landcover classes alongside plastic classes under the sub-categories of 
greenhouses, plastic, tires, and waste sites.

Pixalytics implemented an initial approach to use transfer learning to take the Artificial Neural 
Network and train it for specific plastic waste occurrence scenarios: agricultural plastic waste 
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between greenhouses was tested. The aim was to achieve higher accuracy when the model is 
trained and run on a specific plastic type by using training data focused on that location.

2.3.2. Meta AI Segment Anything Model (SAM)

The Meta Artificial Intelligence (AI) Segment Anything Model (SAM) is documented in a paper
of the same name, and available as code in a GitHub repository. SAM has three components: An 
image encoder (runs once per image), a flexible prompt encoder (that can include text prompts 
or masks), and a fast mask decoder (generates the output mask). SAM was trained on a dataset 
comprised of 11 million images and 1.1 billion masks. As acknowledged in the paper, SAM will 
perform well in general, but can miss fine structures, hallucinates (often defined as “generated 
content that is nonsensical or unfaithful to the provided source content”) small disconnected 
components at times, and does not produce boundaries as crisply as more computationally 
intensive methods that “zoom-in”. Also, in general, the authors of the paper expect dedicated 
interactive segmentation methods to outperform SAM when many points are provided.

Pixalytics tested this model’s applicability to hyperspectral Earth Observation (EO) data. As a 
first step, the model was implemented for a three-band RGB quicklook from CHRIS/Proba-1 
(see below), and then the model will be transferred so it can be run on the hyperspectral inputs.

The Project for OnBoard Autonomy-1 (Proba-1) mission was launched in 2001 and continues 
and celebrated its twentieth anniversary in 2021, with new image CHRIS acquisitions stopped 
at the end of 2022. It carries a hyperspectral instrument, called the Compact High Resolution 
Imaging Spectrometer (CHRIS), alongside a high-resolution camera and instrument payloads 
focused on debris and space radiation.

2.4. Rendered.ai
 

Transfer learning empowers commercial and GEOINT computer vision practitioners by offering a 
practical, efficient, and effective approach to speeding up deployment of AI solutions for critical 
tasks. Transfer learning combines the collective knowledge encoded in pre-trained models with 
fine-tuning using data from a target domain, allowing for training with fewer positive examples 
of the target object than would otherwise be needed.

Typically, transfer learning techniques start with models trained on generic data, such as the 
commonly used Common Objects in Context (COCO) dataset, as labeled data for focused 
domains can be difficult or impossible to acquire. Recent advancements in image simulation 
techniques, however, enable the possibility of base models that are trained on large, diverse 
datasets that approximate the target without the need for large amounts of real examples 
of an exact object of interest. The hypothesis of this project is that synthetic data can be 
used to build a base model that demonstrates improved model performance when transfer 
learning techniques are applied when compared with a model pre-trained on generic data. The 
experiment conducted to test this hypothesis was performed for a common use case relevant to 
commercial and GEOINT computer vision practitioners — detection of cargo planes.

The goals of this experiment were:
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1. to demonstrate that synthetic data designed to emulate real sensor data can be 
used to build a model backbone that improves transfer learning outcomes over a 
backbone trained on generic data;

2. to determine best practices for synthetic data generation and preparation in 
transfer learning applications; and

3. to understand factors that influence synthetic data’s effectiveness in transfer 
learning, as well as the general limitations of this approach.

To implement these experiments, Rendered.ai focused on the creation of the simulated data 
and partnered with the geospatial computer vision experts at Orbital Insight to ensure that the 
model training efforts were conducted using the state of the art in computer vision techniques.

2.4.1. Definition of Real Sensor Dataset and Object Class

The foundation of this investigation involved determining an existing open-source dataset 
containing labeled objects with enough instances to enable effective model training with real 
data alone. This was critical to establish a baseline of performance to be used to measure our 
progress, and to ensure that a diverse test set could be derived from the real data. For this 
research, the focus was directed towards the xView dataset, an open dataset of satellite imagery 
at approximately 30 cm resolution that includes 1 million bounding box labels for 60 common 
man-made object classes covering over 1,400 km2 of the Earth’s surface.

The selection of a target class within the 60 labeled objects in the xView dataset was 
determined based on the assessed detectability of the object in real data, which is influenced by 
both the typical size of the object in pixels and the number of instances present in the dataset. 
With these criteria in mind, the Cargo Plane object class was selected as the object of study. 
Within xView, there are 718 instances of cargo planes across 143 images, providing enough 
unique instances for model training within a diverse set of background contexts. Furthermore, 
the median bounding box area for this object is 11091 pixels in this dataset, providing sufficient 
detectability using standard deep learning techniques.

 
Table 4 — Cargo plane objects in xView.

OBJECT NAME NUMBER OF IMAGES NUMBER OF INSTANCES MEDIAN SIZE (PIXELS)

Cargo_Plane 143 718 11091

2.4.2. Creation of the Synthetic Data Channel

The creation of a synthetic data application capable of emulating the attributes of the selected 
real dataset was a critical step. For this project, the work was based on preexisting tech available 
within Rendered.ai that uses a combination of the Blender simulation engine, 3D models of 
target assets, real imagery backgrounds, and Rendered.ai’s configurable dataset generation 
capability. In order to customize this application to generate data relevant to this use case, there 
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was a requirement to acquire and deploy a variety of 3D models representative of the target 
assets and configure background imagery that matches the domain of the real data.

For the target assets, eleven different 3D models of commercial aircraft of various sizes and 
configurations were utilized. These represented generic aircraft models acquired from 3D model 
marketplaces such as Turbosquid.com. These were then configured for use in the pre-existing 
application and deployed to the Rendered.ai platform.

For the backgrounds, fifteen different airport images, each approximately 1 km2 in area, were 
selected from the xView dataset to ensure image resolution matched that of the target dataset. 
Due to the size of these images, and the large areas of potential placement within each image, 
this number was deemed sufficient for experimentation. In cases where real aircraft were 
present in the image, image manipulation techniques were used to remove these objects from 
the background to avoid confusion of the model. Once this was complete, “agent factories” 
were placed along all runways and aircraft traffic areas to denote where aircraft models could 
potentially be simulated within the scene. These images were then deployed to the Rendered.ai 
platform along with corresponding metadata that would influence simulation, including ground 
sample distance (GSD), sun angle, blur, and noise properties. These environmental and scene 
settings allow for the seamless integration of 3D objects and 2D imagery into a simulated 
capture scene.

The content described above was then deployed as part of a pre-existing RGB satellite 
simulation channel on the Rendered.ai platform, which supports intelligent placement and 
modification of 3D assets within backgrounds, sensor and image specification and variation, and 
a comprehensive labeling system to support the output of diverse labeled image datasets ready 
to be used in model training.

2.4.3. Dataset Generation and Domain Adaptation

The resulting synthetic data channel was used in generating datasets specifically designed for 
training and experimentation. For the purposes of this experiment, two different configurations 
of the simulation framework were used to test the relative performances of different 
approaches. For one dataset, the 3D assets were simulated unmodified within the background 
scene. In the second, modifiers were added to randomly change the color and slightly vary the 
scale of the input plane assets and to vary sun angle in the scene to project shadows of varying 
lengths and directions against the background. The purpose of this experiment was to test 
which approach generated data that provided the best performing model against the xView test 
set.
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Figure 8 — Left: Example synthetic image with unmodified assets (planes). Right: 
Example image with color and scale of assets and sun angle of the scene varied.

Testing revealed that the dataset with the unmodified assets and scene outperformed that 
of the parameter-varied set. This result suggests that the accuracy of domain match (or put 
differently, the “realism”) of the synthetic data output is more important in this case than 
additional diversity at the potential expense of domain match. This may have been especially 
true due to the relatively small size of the training datasets.

The next experiment undertaken was to apply a trained Generative Adversarial Network 
(GAN) domain adaptation model to the synthetic dataset. This GAN model was trained using a 
source dataset of synthetic satellite image data, and a target set of unmodified xView imagery. 
Thus, this process uses generative AI techniques to adapt input synthetic images to match the 
statistical characteristics of the real image data. As seen in the provided example images, this 
process can change the characteristics of the image, introducing changes in hue, artifacts, and 
aberrations that otherwise may not be introduced by a pure simulation approach. The relative 
positions of objects in the image, however, remain consistent, allowing for previously generated 
labels to maintain their integrity.
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Figure 9 — Left: Original simulated synthetic image. Right: Resulting 
image after modifying the original image with GAN-based domain 

adaptation, a post-processing technique used to enhance domain match.

The results of this testing showed that the dataset with GAN-based domain adaptation applied 
demonstrated significantly improved training results over the non-adapted dataset. This 
confirms prior findings from experiments done by Rendered.ai and Orbital Insight that test 
model performance on domain-adapted synthetic image data. With these findings established, 
establishing hypotheses surrounding which synthetic dataset will provide the most effective 
model backbone for the transfer learning experiments to come could begin.

2.4.4. Model Training and Transfer Learning

To test the effectiveness of using a model backbone trained on synthetic data compared with 
a generic backbone, the first step was a pre-trained model backbone developed using the 
COCO dataset. This dataset is commonly used for generic model training due to the large 
and diverse set of object classes contained in this dataset and its generally accepted level of 
data label quality. For the detection model, the Faster R-CNN object detection model using 
the Detectron2 framework was leveraged. This model was chosen due to xView annotations 
containing only bounding box locations and not full instance-level segmentation masks required 
for a segmentation model such as Mask R-CNN.

Using the trained COCO model backbone, a baseline detection performance metrics on the 
cargo plane subset of xView was established. Of the 143 images containing planes, 63 images 
were selected for the training set, containing a total of 327 object instances. The validation and 
test sets were then allotted 21 and 59 images respectively, with 92 and 299 object instances, 
respectively.

Transfer learning models were then trained atop the COCO model backbone using the full 
training set, as well as six artificially constrained subsets of the training set, containing 50, 40, 
30, 20, 10, and 5 positive training image examples. This was done to measure the effects of 
introducing scarcity into the training set. To achieve a rapid, relative assessment of performance 
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of each of these training sets, model training and fine-tuning hyperparameters were fixed 
for all training sets and not optimized for each training set independently. Additionally, due 
to limitations in the Detectron2 libraries, model parameters were not scale-aware, and were 
susceptible to changes in image scaling due to inconsistent input image size.

Once baseline metrics were determined using a generic COCO model backbone, separate model 
backbones were trained using both the GAN-adapted synthetic dataset, which showed the 
best detection performance in the initial testing, as well as a combination of all three synthetic 
datasets: the non-adapted base dataset; the color, scale, and shadow modified dataset; and the 
GAN-adapted base dataset. These new backbones were then used to train transfer learning 
models for each of the full and artificially constrained xView training datasets to compare 
effectiveness against the generic model backbone results.
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3 TRANSFERRING MODELS BETWEEN
SOFTWARE APPLICATIONS
 

With the emergence of various software frameworks for implementing deep learning 
architectures and rapid development in research using these frameworks, it is imperative to 
understand the transfer of models between these software frameworks. Some of the notable 
frameworks are shown in [dl-frameworks-tabl], which is not an exhaustive list.

 
Table 5 — Existing software frameworks for implementing deep learning based architectures

SOFTWARE 
FRAMEWORK

YEAR OF 
RELEASE

PLATFORM TYPE REPOSITORY LICENSE

TensorFlow 2015
Cross-
Platform

ML library
https://github.
com/tensorflow/
tensorflow

Apache 
License 2.0

PyTorch 2016
Cross-
Platform

ML library
https://github.
com/pytorch/
pytorch

Berkeley 
Software 
Distribution 
(BSD)

MxNet 2017
Linux, 
macOS, 
Windows

ML library
https://github.
com/apache/
mxnet

Apache 
License 2.0

Caffe 2014
Linux, 
macOS, 
Windows

DL library
https://github.
com/BVLC/caffe/
tree/master

The 2-Clause 
Berkeley 
Software 
Distribution 
(BSD)

Keras 2015
Cross-
Platform

DL library
https://github.
com/keras-team/
keras

Apache 
License 2.0

CNTK 2016
Cross-
Platform

ML and DL library
https://github.
com/Microsoft/
CNTK

MIT License

Deeplearning4j 2014
Cross-
Platform

Natural Language 
Processing(NLP), Deep 
Learning, Machine 
Vision, Artificial 
Intelligence(AI)

https://
github.com/
deeplearning4j/
deeplearning4j

Apache 
License 2.0

Theano 
(Deprecated)

2007
Linux, 
macOS, 
Windows

Machine learning 
library

https://github.
com/Theano/
Theano

The 3-Clause 
Berkeley 
Software 
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SOFTWARE 
FRAMEWORK

YEAR OF 
RELEASE

PLATFORM TYPE REPOSITORY LICENSE

Distribution 
(BSD)

Chainer 2015
Cross-
Platform

DL library
https://github.
com/chainer/
chainer

MIT License

Cross-Platform = Linux, macOS, Windows, Android, JavaScript; DL = Deep Learning; ML = Machine 
Learning

The above mentioned frameworks have attracted huge attention with respect to the number 
of stars and forks from their respective repositories. However, many of those repositories have 
been terminated or deprecated with time.

In order to analyze the transfer learning aspect with reference to various software frameworks, 
an end-to-end framework based on web-services architecture was developed for training, fine-
tuning based on a pre-trained model, visualizing model graphs, and inferencing. The client-
side authentication was incorporated based on OIDC for a particular task and user. The above-
mentioned functionalities are developed as web-services based on OGC Web Processing 
Service (WPS) Standard and OGC API — Processes — Part 1: Core. Moreover, the training data 
is encoded as a JSON file based on the OGC Training-data Markup Language for Artificial 
Intelligence.

Figure 10 illustrates the overall Learning-as-a-service (LAAS) workflow of the proposed 
standardized framework based on the web-services.

Figure 10 — Overall Learning-as-a-service (LAAS) workflow

The LAAS framework comprises the following end-points for implementing various operations.
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1. Authentication: The OIDC based authentication for introducing security across 
each project/task ensures accountability and is significant when multiple 
stakeholders with different tasks and datasets are involved, see Figure 11. 
Additionally, security is beneficial when multiple users are selectively required to 
be authenticated.

Figure 11 — Authentication

2. /tdml — TDML-as-a-service: Endpoint implementing generation of training data 
encodings in a JSON file format based on the OGC Training-DML for AI Standard.
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Figure 12 — TDML-as-a-service

3. /processes — Processes-as-a-service: Endpoint for executing processes as a 
web-service based on the OGC API — Processes — Part 1.
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Figure 13 — Processes-as-a-service

4. /models — Endpoints for accessing the model catalog: This model catalog or 
model repository holds all the deployed models which are then available to be 
used for other API endpoints.
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Figure 14 — Models

5. /preview — Preview-as-a-service: Endpoint for previewing the model layers and 
visualizing the model graph using the Netron visualizer hosted as a web-service.

Figure 15 — Preview-as-s-service: previewing the model layers
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Figure 16 — Preview-as-a-service: visualizing the model graph

If the link in the Request URL is opened, the model graph can be visualized using 
the hosted Netron app as illustrated in Figure 17.

Figure 17 — Netron app

6. /inference — Inference-as-a-service: The inference endpoint for executing the 
inferencing as a process based on the OGC API — Processes — Part 1 which uses 
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a selected deep learning model from the model catalog and returns the output 
based on the OGC WPS standard.

Figure 18 — Inference-as-a-service

The above endpoints are accessible using the Swagger UI client hosted at the demo instance. 
This demo instance is deployed using a docker container (ZOO-Kernel Docker container) which 
interacts with the Triton Inference Engine hosted on another docker container (Triton Inference 
Server Docker Container). Such an implementation introduces modularity and is efficient in 
development and maintenance due to availability of services as API endpoints.

Based on the above endpoints, it was observed that the ML features (not to be confused with 
OGC features) which are captured as model weights and biases are majorly consistent across 
the software frameworks. However, there are some evident differences arising due to varying 
quantization across different software frameworks.
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3.1. Transferring models between geographical locations
 

3.1.1. Producing an in-season crop map for a country outside of the United 
States (GMU)

Producing an in-season crop map for a country outside of the United States is still a challenge 
because of spatiotemporal non transferability of trained classifiers. In this study, it was proposed 
to design spatiotemporally transferable learning algorithms and a temporal learning strategy 
that would maximally transfer label data and models from the US case to other countries. 
The learning algorithms and the learning strategy were designed to learn the spatiotemporal 
invariant features of the crop growth spectrum over a growing season from a limited number 
of remote sensing images. The learned algorithm was applied with local crop knowledge (e.g., 
starting date of a growing season) as the constraints to map in-season crops in other locations 
and times. In this study, spatiotemporal transfer learning methods were developed, tested, 
and validated in the U.S. (e.g., trained in Nebraska and tested and validated in Illinois). This 
was because the U.S. has abundant ground truth data and historic crop maps available for 
algorithm development, testing, and validation. The U.S. trained algorithms were then applied to 
a province in Brazil (e.g., Mato Grosso) to test and validate the cross-country (spatial) and cross-
hemisphere (temporal due to season difference) transferability of the developed algorithms.

3.1.1.1. Transferability of crop type classification model

Figure 19 illustrates the application of transfer learning to sugarcane mapping in Palm Beach 
County and Lafourche County as of November 2022. The classification model achieved an 
overall accuracy of 0.928 in Palm Beach County, Florida USA and 0.952 in Lafourche Parish, 
Louisiana USA. Furthermore, the F1 scores for sugarcane classification in these counties were 
0.947 and 0.968, respectively, indicating strong performance in both areas.
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Figure 19 — Sugarcane mapping result for Palm Beach County and Lafourche County.

To rigorously assess the error rate and therefore the transferability of the model, the evaluation 
was extended to Hamilton County, Nebraska, a region without any sugarcane cultivation. Here, 
the error rate serves as a negative indicator, providing insight into the model’s adaptability 
to new geographical contexts. In this scenario, only 0.7% of the total pixels were mistakenly 
classified as sugarcane, reflecting an acceptable error rate. A lower percentage of misclassified 
pixels within this study area supports the argument for the model’s favorable transferability 
across different regions.

3.2. Transferring models between application domains
 

3.2.1. GMU Results: Image enhancement through computer vision 
technologies

An extension of the GMU Testbed-19 activity was to eliminate noisy pixels and correct 
the misclassification result for the transfer learning result. To do this, a CV-based image 
segmentation technology was implemented within the crop type classification workflow. For 
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example, the latest Segment Anything Model (SAM) is an open-source segmentation system 
from Meta, which includes zero-shot generalization of unfamiliar objects and images without 
the need for additional training. It can potentially be used to automatically delineate cropland 
units from high-resolution satellite images. As shown in Figure 20, the preliminary experimental 
results indicate that SAM can be successfully applied in post-processing to extract cropland 
units from Sentinel-2 images. By voting for the major crop types within each land unit, noisy 
pixels can be removed from the remote-sensing-based crop type mapping results.

Figure 20 — Concept of enhancing transfer learning results using SAM.

To illustrate the potential of using SAM to enhance the transfer learning result, the experiment 
was performed on two key agricultural regions in the United States, one in California’s San 
Joaquin Valley and the other in the U.S. Corn Belt. The first study area is chosen from the San 
Joaquin Valley of California’s Central Valley, located in Riverdale, Fresno County. The major crop 
types grown there are mainly vegetables and fruits. The second study area was from U.S. Corn 
Belt, located in Qulin, Butler County, Missouri. The major crop types grown here are soybeans, 
corn, and rice.

Figure 21 shows the comparison of crop type maps before and after enhancement with SAM. 
In Figure 21 (a), the original CDL imagery on the left is quite noisy. While there are a few 
ambiguous cropland units with many different pixel colors, most units have a clear majority, 
such as the two adjacent almond fields with quite a few pixels misclassified as pistachios near 
the top left. These errors are the kind that SAM seems to have the greatest potential to correct, 
enabling the accuracy of CDL to be further enhanced. Overall, a total of 17.11% of the pixels in 
this image were reclassified, quantifying the improvements that SAM can contribute to existing 
agricultural data. Figure 21 (b) illustrates how the accuracy of the CDL varies depending on 
the study area. In particular, the cropland unit in the center contains many pixels misclassified 
as cotton instead of the majority, soybeans. For this study area, only 8.01% of pixels were 
reclassified, although that may be due to less initial noise than in the San Joaquin Valley study 
area.
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Figure 21 — Comparison of crop type maps before and after enhancement with SAM.

3.2.2. Pixalytics plastics application — General to specific detection model

A Keras Sequential Neural Network model (NNet) has an input and output for every layer. For 
the Pixalytics plastics model tests, Transfer Learning (TL) consisted of freezing all layers except 
the bottom layer in a NNet model. There are two ways to do this in Keras:

• set the trainable attribute of the frozen layers to False such that they aren’t trained; or

• add freshly initialized classification layers on top of a stack of pre-trained model layers.

For this work, the first approach was tested as the aim is to use the same model but improve its 
ability to classify a specific type of plastic. The original model was trained on the full Training 
Dataset (TDS) that included multiple forms of plastics, including agricultural, marine, tires, and 
waste sites. The TL was then specifically trained on agricultural plastic, identifying sites where 
plastic was intentionally placed on the ground to support enhanced crop growth or used for 
greenhouse construction.

The NNet model has the structure shown in Figure 22. The layers include:

• flatten: to flatten all the input dimensions into a single dimension;

• dense: to implement a regular, deeply connected NNet layer that receives inputs from all 
neurons in the previous layer and applies a matrix-vector multiplication; and

• dropout: to reduce the training dataset size so that overtraining does not occur.

OPEN GEOSPATIAL CONSORTIUM 23-033 47

https://www.tensorflow.org/guide/keras/sequential_model#transfer_learning_with_a_sequential_model


Figure 22 — Sequential Neural Network model structure.

The results of the training are shown using a confusion matrix where the manually identified 
land cover type of a subset of pixels is compared to the result of the trained NNet model, as 
shown in Figure 23.
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Figure 23 — Sequential Neural Network confusion matrix.

This does not give the full picture, and so specific satellite images are also viewed. Figure 24
shows the Sentinel-2 RGB pseudo-color composite for the Almeria region in Spain where there 
is an abundance of greenhouse and associated agricultural waste.
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Figure 24 — Sentinel-2 RGB pseudo-color composite 
and NNet model output for the Almeria region in Spain.

For the experiment, the trainable attributes were frozen for all layers except the bottom 
(dense_5) layer. Then, training was re-run using additional images acquired over Almeria. The aim 
was to improve the accuracy of the plastic class that is associated with piles of agricultural waste 
in this region. This detection is difficult as the piles are often small, less than a Sentinel-2 pixel 
(10 by 10 m) in size, and the ground between the greenhouses being contaminated with plastic 
particles.

Figure 25 shows the results after Transfer Learning has been applied. A large number of pixels 
have not been classified (including the greenhouses themselves) as the training dataset was 
reduced, and these are transparent with Google Earth showing through.
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Figure 25 — Sentinel-2 NNet model output for the 
Almeria region in Spain with Transfer Learning applied.

3.2.3. Pixalytics Meta AI Segment Anything Model (SAM) — machine vision 
RGB imagery to multispectral/hyperspectral EO data

Pixalytics tested this model’s applicability to hyperspectral Earth Observation (EO) data. The 
code is available in an open GitHub repository.

As a first step, Figure 26 shows the initial results from testing the SAM ML model on a three-
band pseudo-true color CHRIS/Proba-1 RGB image following the approach that SAM was 
designed for. The colors of the polygons are assigned randomly and so should not be compared 
from figure to figure.
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Figure 26 — Results from applying SAM to a pseudo-true color CHRIS/Proba-1 RGB image.

The next step was to amend the input to SAM from three bands, so more than a pseudo-true 
color composite could be provided. Two approaches have been explored as follows.

• Figure 27 shows the results of applying a Principal Component Analysis (PCA) to all 62 
bands, a dimensionality reduction method, and then displaying the first three components 
as an RGB image alongside ingesting these three bands into SAM.

Figure 27 — Calculation of a Principal Components Analysis (PCA) image, 
using the first three components, and the results of applying SAM to it.
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• Figure 28 shows the results of ingesting three bands at a time into SAM and then collating 
the generated polygons as this is looped through all bands. On the left is the output after 
the first five loops and on the right is the result after 39 loops.

Figure 28 — Results from applying SAM to sets of 
three bands iteratively throughout the spectrum

The approach with 39 loops identified the most polygons, but takes considerably longer to run 
because SAM takes time to run for each loop.

3.3. Transferring models from synthetic datasets to real 
EO data
 

To show performance results of model training outcomes, Rendered.ai used the AP50 metric, 
which describes the average precision of the model where a true positive prediction is classified 
as having an intersection-over-union (IOU) value of at least 0.5 against a labeled object in the 
test set allowing for some variation in the location of the prediction in relation to the truth label 
and limits the impact of mislabeling that may be present in the truth dataset.

3.3.1. Synthetic Training Set Comparison

To understand which synthetic dataset approach yielded the best results before using the 
datasets for model backbone training, these datasets were used to fine-tune a COCO model 
backbone with no real data used in training. The trained models were then used to inference 
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against the xView cargo planes test dataset. This approach is often called “zero-shot” training, as 
the model has used no real examples of the target object in its training.

Figure 29 showed that zero-shot model performance was highest when using the basic synthetic 
dataset post-processed through a Generative Adversarial Network (GAN)-based domain 
adaptation model specifically trained to adapt to match xView data. The next highest performing 
dataset was that of the basic dataset combined with the dataset containing images with plane 
assets and time of day varied. One potential reason for the high performance of this dataset is 
the larger number of images contained. However, when the basic, parameter-varied, and GAN-
adapted datasets were all combined, the result was the lowest performance of all the datasets 
tested. This result is surprising and further investigation is necessary. One possible cause is that 
the hyper-parameters were not optimized, as in this study the same hyper-parameters were 
used throughout all experiments without any optimization across different datasets.

Figure 29 — Zero-shot synthetic dataset performance

3.3.2. Transfer Learning on a Generic Model Backbone

The initial training results of the xView cargo plane dataset and the subsequent constrained 
training subsets trained atop the COCO model backbone show a peak AP50 of 64% when using 
the full training set, dropping to just about 50% when using just 5 images from the training set; 
see Figure 30.
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Figure 30 — AP50 of xView subsets trained on COCO backbone.

3.3.3. Comparison of Generic versus Synthetic Model Backbones

These results were then compared against those same subsets used to fine-tune a model 
backbone trained using synthetic data. The highest performing synthetic data model backbone 
was that which was trained solely on the base synthetic dataset that had the GAN-based 
domain adaptation applied to it. This result is in line with expectations, given that this was the 
dataset that trained the highest performing model when tested against the xView cargo planes 
dataset. The results showed that model fine-tuning applied to a model backbone trained on this 
synthetic data significantly improves results. This result is highlighted in Figure 31, where the 5 
and 10 image subsets, when used to fine-tune the synthetic data model backbone, demonstrate 
a 10.3% and 13.7% improvement, respectively, when compared with the results of those same 
datasets used to fine-tune the COCO model backbone.
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Figure 31 — COCO versus synthetic model backbones
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4 FEEDBACK ON THE RESEARCH QUESTIONS
 

According to Wilkinson (2016), resources are FAIR when they are Findable, Accessible, 
Interoperable, and Reusable. The FAIR principles provide an underpinning for standards through 
which an efficient and effective exchange of services may be achieved. This Engineering Report 
(ER) considers the potential for standards to underpin dependable and efficient transfer learning 
in the geospatial information processing domain.

The question may be set in the context of the use cases of building a business in Transfer 
Learning. On the Demand side, a business may be trying to market geospatial analytics that 
employs a solution based on ML-generated AI. In order to proceed, the business needs Training 
Datasets (TDSs), which are expensive, and in order to make the analysis sufficiently accurate, 
may need such a large TDS to make the expenditure prohibitive. However, if the business can 
jump-start the ML process with existing AI with Features similar to what will be required for the 
intended analytics, i.e., with transfer learning, then this business might thrive.

On the supply side, a business might have previously built a set of ML models for analytics. The 
ML-discovered Features in AI might be uniquely powerful for certain types of applications. Also, 
sharing the Features in the market for use in related domains –exploiting them through transfer 
learning- could help other applications to be established faster, be more cost-effective, and 
potentially have more accurate results.

Transfer learning and the research questions have been reviewed using the FAIR principles.

4.1. How is an ML Model to be described to enable 
FINDABILITY of the model for Transfer Learning 
applications?
 

A Machine Learning (ML) model should include relevant metadata to provide comprehensive 
information about the model. Such metadata facilitates easily finding and assessing its suitability 
for transfer learning applications, facilitating knowledge sharing, reusability, and interoperability 
within the ML community.

Below is reported a minimum set of key aspects to be included in the ML model metadata.

• Model Name and Version: Assign a unique, and ideally a mnemonic, name to the ML 
model and its version number to distinguish it from other models.

• Model Description: Provide a detailed description of the ML model, including its purpose, 
functionality, and the specific domain or problem it was trained for. This description should 
give potential users an understanding of the model’s capabilities and limitations.

• Training Data Description: Provide a detailed description of the TDS on which the 
model was built. A list, or better, a characterization of the distribution of its labels as in a 
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histogram, or better yet, a description of the training data in terms of the ontology and/
or taxonomy of its labels, will usually provide much insight into the model’s probable 
utility for another domain of application. For models trained using synthetic data, as 
discussed in this report, include information about the simulation technique used and 
the diversity and fidelity of input models and textures, as well as any post-processing or 
domain adaptation that was applied to the data prior to model training. If possible, provide 
a link to the application used to generate the input synthetic data, allowing users to view 
and reconfigure the data generation pipeline.

• Model Architecture: Explain the underlying architecture of the ML model, including the 
type of model (e.g., convolutional neural network, recurrent neural network), the number 
and types of layers, activation functions used, and any specific architectural variations. 
The architecture can be important as different types of models will have distinct but 
complementary capabilities and use cases.

• Pre-trained Model Details: If the ML model is based on a pre-trained model or utilized 
transfer learning, provide information about the source of the pre-trained model, its 
domain, and any modifications made during the transfer learning process. It might be that 
a user wants to find the original ML model and start transfer learning from that.

• Input and Output Specifications: Clearly define the input data requirements for the model, 
including the expected data format, size, and any pre-processing steps that need to be 
applied. Specify the type of outputs the model generates, whether it is classifications, 
regression values, or other relevant outputs.

• Performance Metrics: Include information about the performance metrics used to 
evaluate the model, such as accuracy, precision, recall, or F1 score. Provide details on the 
performance achieved by the model on the training and validation datasets.

• Model Format and Dependencies: Specify the format in which the model is saved (e.g., 
ONNX) and any specific software or library dependencies required to load and utilize the 
model.

Metadata useful for Finding a model is already, in many cases, defined through standards such 
as:

• DCAT: The Data Catalogue Vocabulary (DCAT) v2.0 is designed to facilitate 
interoperability between data catalogs published on the Web;

• ISO 19115: ISO 19115-1:2014 defines the schema required for describing geographic 
information and services by means of metadata; and

• OGC: Training Data Markup Language for Artificial Intelligence (TrainingDML-AI) Part 1: 
Conceptual Model.

The above standards provide a start at defining a minimum set of metadata to describe a ML 
model sufficiently to support the search for Source Domain models suitable for new Target 
Domains.

However, as AI continues to grow, it will become increasingly challenging to support effective 
businesses on the demand side of the transfer learning market, i.e., to locate suitable candidates 
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for the transfer learning of Features related to a new Target Domain. This section began to 
provide a list of capabilities to help solve this problem.

4.2. How is an ML Model to be managed to enable 
ACCESS of the model for Transfer Learning applications?
 

Proper management practices need to be implemented to enable access to a ML model for 
transfer learning applications. Here are some key considerations for managing a ML model 
to facilitate accessibility. Some elements overlap because of the strong connection with the 
previous question, such as findability.

• Model Repository: Establish a central repository or storage system where the ML model 
is stored, organized, and managed. This could be a version control system or a dedicated 
model registry allowing users to access and retrieve the model easily.

• Access Control and Permissions: Implement access control mechanisms to manage 
user permissions and control who can access and utilize the ML model. Define roles 
and permissions based on the specific needs and requirements of transfer learning 
applications.

• Model Metadata: Include relevant metadata about the ML model to facilitate search and 
discovery according to components described in detail within Section 4.1. To guarantee 
consistency and interoperability, metadata standards could be considered and adapted to 
specific application domain fields.

• Model Versioning: Implement a versioning system to manage different versions of the ML 
model. This allows users to access specific model versions and facilitates experimentation 
and comparison between different iterations.

• Model Deployment and Serving: Determine the appropriate deployment strategy for the 
ML model, whether it’s deploying as a web service, containerized application, or through 
API endpoints. Ensure that the deployment process is well-documented and accessible to 
users.

• Licensing and Intellectual Property/Constraints: Clearly state the licensing terms and any 
intellectual property considerations associated with the ML model, ensuring compliance 
with relevant legal and ethical requirements or other constraints.

• Access Control Mechanisms: Describe the specific access control mechanisms to restrict 
access to the model and associated sensitive or classified information. The control 
mechanisms may include user authentication, role-based access controls, and encryption 
techniques to ensure that only authorized individuals can access the model. Providing a 
suitable “link” to the model file (e.g., .pth, .pkl, .onnx) could be also important, allowing 
users to efficiently utilize the model for inference without requiring extensive setup or 
configuration. While this approach may not be commonly used in the case of transfer 
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learning, it remains an important consideration to enhance the accessibility and usability of 
the model for end-users.

• Secure AI practices: It is important to secure the data curated by the user and 
corresponding model. Most of the real-world problems associated with Geo-AI have an 
implicit location associated with their datasets and it becomes important to secure this 
information. For such problems, a secure and authentication-driven approach to access the 
data and relevant models would ensure secure Geo-AI practices.

This section suggested a set of goals that would demonstrate standard Access paths for 
the demand-side of AI transfer learning businesses. However, the rapid proliferation of AI 
is likely to be accompanied by an increasing divergence in AI architectures, and solutions to 
Interoperability, considered in the next section, will have to be developed hand-in-hand with 
Access.

4.3. Are there significant opportunities for 
INTEROPERABILITY among/between ML Models 
even if they derive from different architectures, e.g., by 
mapping to a canonical representation, such as the ONNX 
standard?
 

Indeed, there are considerable prospects for achieving interoperability among ML models, 
irrespective of their diverse architectures. The ONNX standard emerges as a viable solution, 
offering a universal and unbiased format to represent ML models.

By converting models from different frameworks into the ONNX format (see Figure 32), the 
models gain independence from the specific architectures or frameworks in which the models 
were originally trained.

OPEN GEOSPATIAL CONSORTIUM 23-033 61



Figure 32 — Transfer Learning model interoperability.

This approach can enable easier integration and transfer of models across various frameworks 
and architectures. Below is a non-exhaustive list highlighting the potential benefits of 
interoperability through a standard representation.

• Framework Independence: Models can be used across different frameworks without 
requiring reimplementation or modification.

• Model Exchange and Collaboration: A standard representation facilitates the easy 
exchange and sharing of ML models between individuals, teams, or organizations.

• Transfer Learning Opportunities: Interoperability through a common representation 
unlocks transfer learning opportunities across diverse architectures.

• Deployment Flexibility: Models in a standard format can be deployed and executed on 
various hardware platforms, including CPUs, GPUs, and specialized accelerators.

• Support for Standard Operations: Standards such as ONNX define common operations 
and operators, ensuring that models can be consistently interpreted and executed across 
different frameworks.

However, while ONNX and similar standards can provide a solid foundation for model 
interoperability and are currently used as “lingua franca” in multiple AI hardware environments, 
OGC has not yet confirmed the degree to which these standards are universally applicable 
frameworks for interoperability in the geospatial setting. Therefore, it is essential to consider the 
limitations and compatibility matrix of the specific frameworks and tools involved.

This section was applied to both the Demand-and the Supply-side of AI transfer learning 
businesses. But interoperability applies at many levels, and the “black box” nature of Neural 
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Network computing models–their non-modularity–leaves interoperability at the level of a 
domain taxonomy of objects-and features-of-interest a still-open problem.

4.4. How is an ML Model to be described to enable 
efficient RE-USE through Transfer Learning applications?
 

An ML Model needs to be adequately described to enable efficient re-use through transfer 
learning applications. Some of the main characteristics that the ML model should possess to 
make it suitable for transfer learning include the following.

• Generalization Capability: A suitable ML model for transfer learning should demonstrate 
the ability to generalize well across different domains or tasks, leveraging its learned 
knowledge from one and applying it effectively to others.

• Feature Extraction and Representation Learning: Transfer learning benefits from models 
that can extract and learn meaningful features from the training data, capturing high-level 
representations transferable to new tasks and enabling effective knowledge transfer.

• Modularity and Flexibility: ML models suitable for transfer learning should be designed 
modular and flexible for transferring specific components or layers of the model while 
adapting to different input data and output requirements in the target task.

• Robustness to Noisy or Incomplete Data: Transfer learning often encounters variations 
and differences in the training and target domains, exhibiting robustness to handle noisy 
or incomplete data, enabling it to adapt and learn from new environments effectively.

• Scalability and Efficiency: As transfer learning involves reusing pre-trained models, 
scalability and efficiency are essential characteristics that should be able to handle large 
datasets and be computationally efficient, allowing for quick adaptation and fine-tuning 
in the target task. Moreover, to sufficiently understand the nature and usability of an ML 
model for transfer learning, additional information must be provided. This information aids 
in assessing the model’s reliability, applicability, and performance, and could be integrated 
into the Model Documentation metadata.

• Training Data Provenance: Describe the source and characteristics of the training data 
(e.g., a “link” to a data mark-up file. OGC’s TDML could be used). Include information 
about the dataset’s origin, collection methods, data quality, and any pre-processing or 
augmentation techniques applied to the data.

• Model’s Domain Provenance: Including the provenance of the model’s domain provides 
details about the origin and context in which the model was trained. It encompasses 
information about the dataset, data sources, pre-processing techniques, and domain-
specific considerations. Provenance helps evaluate the model’s relevance and suitability 
for the target task. In the context of models trained on synthetic data, domain provenance 
includes information related to the simulation pipeline of the data generated, as well as 
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any real data used in training domain adaptation techniques that may be applied to the 
data prior to training.

• Model Documentation: Create comprehensive documentation that should accompany the 
ML model and provide detailed information about the ML model, including its architecture, 
design choices, and overall structure alongside purpose, usage guidelines, input/output 
specifications, and any dependencies or requirements. The documentation should provide 
clear instructions on how to utilize the model for transfer learning, including guidance 
on fine-tuning, feature extraction, and adapting the model to new tasks. Documentation 
could also include specific hardware specifications and resources necessary to run the 
model efficiently to allow users to assess whether their existing hardware infrastructure 
is capable of supporting the AI method effectively or if any upgrades or modifications are 
required. This documentation should be made easily accessible and be regularly updated.

• Architecture and Parameters: Describing the model’s architecture and specific parameters 
is crucial, including the model type (e.g., convolutional neural network, recurrent neural 
network), the number and type of layers, activation functions, and any architectural 
variations employed. These details enable practitioners to understand the model’s 
structure and make informed decisions during transfer learning.

• Pre-training Objective: Knowing the pre-training objective provides insight into the 
primary task for which the model was originally trained. It helps users understand 
the original purpose and biases associated with the model, guiding decisions on its 
applicability to the target task.

• Training Data Statistics: Providing statistics about the training data, such as the 
size, distribution, and diversity of the dataset, gives an indication of the data’s 
representativeness and suitability for transfer learning. Understanding the characteristics 
of the training data helps assess potential challenges and limitations when applying the 
model to a new task.

• Transfer Learning Strategy: Describing the specific transfer learning strategy employed 
is important. This aspect includes details about the layers or parameters that were frozen 
during transfer, the approach for fine-tuning, and any specific adaptations made for the 
target task. Understanding the transfer learning strategy aids in evaluating the model’s 
adaptability and potential alignment with the target task.

• Quality Measures: Including quality measures provides an assessment of the model’s 
performance and reliability. These measures may include accuracy, precision, recall, F1 
score, or other relevant metrics. Quality measures help evaluate the model’s strengths, 
limitations, and potential applicability in specific contexts.

• Data Cards & Model Cards: Creating Data cards and Model cards are considered as best-
practices for reproducible AI research. These cards define structural information related 
to various ML datasets and are useful in promoting responsible AI practices in projects 
involving multiple stakeholders.

The description should provide the following necessary information for potential users to 
understand the model’s characteristics and suitability for transfer learning.
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• Model Documentation: Comprehensive documentation should accompany the ML model, 
as described in detail within Section 4.2.

• Model Metadata: As described in detail within Section 4.1, this information helps 
users assess the applicability and relevance of the model to their specific transfer 
learning scenario. Ideally, the model metadata should include all necessary details and 
specifications that enable a user to replicate the results of the training stage.

• Provenance Information: It is important to include details about the origin and source of 
the ML model, such as the dataset it was trained on, the pre-processing steps applied, 
and any modifications made during the training process. Provenance information helps 
establish the model’s credibility, reproducibility, and reliability.

• Performance Measures: The ML model’s description should contain performance 
measures that indicate its effectiveness and generalization capabilities. These measures 
may include accuracy, precision, recall, or other relevant metrics. Additionally, information 
about the model’s performance on different tasks or domains can assist in determining the 
model’s potential for transfer learning.

• Compatibility and Requirements: Any specific compatibility requirements or 
dependencies, such as the framework version or libraries needed, should be clearly stated. 
This aspect ensures users integrate the model seamlessly into their transfer learning 
workflow.

This section applied to both the Demand- and Supply-side of AI transfer learning businesses. 
The ability to Reuse is critical for a commercial market to exist.

4.5. Other Considerations
 

The FAIR principles provide a broad program for developing effective standards, but are 
not entirely comprehensive. For instance, the pillars of Trustworthy AI being defined in new 
standards’ efforts around the globe, including in the U. S. through Executive Order 13960 
and the National Institutes of Science and Technology’s AI Risk Management Framework, 
include elements such as “Valid and Reliable,” “Safe,” “Secure and Resilient,” “Accountable and 
Transparent,” “Explainable and Interpretable,” and “Privacy-Enhanced”. The subsections below 
comment on how some additional factors might impact the emergence of Standards for transfer 
learning in the remit of OGC.

4.5.1. Fairness versus Bias

Several elements are required for Trustworthiness in AI to apply beyond the transfer learning 
focus of this ER. However, the issue of bias has been explicitly raised in the literature as a 
problem for the transfer learning habits in the industry, e.g., Salman et al., 2022, and indications 
from the research that indicates specific countermeasure may be taken to repair this problem, 
e.g., Gichoya et al., 2023.
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4.5.2. Considerations on Taxonomy

Taxonomies are crucial for ML as they provide a structured framework for organizing and 
categorizing data, facilitating efficient model development, data sharing, and knowledge 
transfer across different applications and domains. Therefore, standardizing taxonomy’s 
structure or categorization is essential for successfully implementing ML and transfer learning 
techniques. Using different taxonomies can present several challenges that hinder ML models’ 
interoperability, reusability, and effectiveness.

One of the main problems is semantic misalignment, where different taxonomies utilize varying 
terminology, definitions, or class hierarchies to represent similar concepts. This misalignment 
leads to confusion and inconsistencies when integrating or comparing ML models trained on 
different taxonomies, making it difficult to establish a common understanding of data and 
relationships between classes.

Another issue arises in the form of incompatibility and data integration. ML models often 
require diverse data sources for training and validation. Integrating data from various sources 
becomes challenging when different taxonomies are used due to class definitions and category 
mismatches.

This difficulty in effectively harmonizing and combining datasets can result in the limited 
availability of training data and can reduce ML models’ overall performance and generalization 
capabilities.

Furthermore, ML models trained on one taxonomy may struggle to generalize or transfer their 
knowledge to a different taxonomy. Significant differences in class definitions, hierarchical 
structures, or attribute representations between taxonomies can compromise the model’s 
ability to apply learned knowledge to new datasets or tasks. Consequently, the reusability and 
adaptability of ML models across different domains or applications are hindered.

To address these challenges, efforts toward standardization, collaboration, and the establishment 
of common taxonomies within specific domains or across communities are necessary. The 
development of domain-specific ontology or controlled vocabularies can provide a unified 
framework for data representation and knowledge sharing. In the context of geospatial 
intelligence applications and decision-support processes, developing and adapting taxonomies 
are essential for successfully implementing ML and transfer learning techniques.

In the context of geospatial intelligence applications and decision-support processes, developing 
and adapting taxonomies are essential for successfully implementing ML and transfer learning 
techniques.

• Contextualizing Taxonomies: Geospatial intelligence encompasses diverse application 
areas such as land cover classification, object detection, change detection, anomaly 
detection, and environmental monitoring, among others. Each of these applications has 
unique characteristics, data requirements, and objectives. Therefore, taxonomies need to 
be adapted to the specific needs of these applications to ensure the effective deployment 
of ML models.

• Granularity and Representation: Taxonomies should consider the level of granularity 
required to address different geospatial intelligence tasks. For instance, a taxonomy for 
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land cover classification may include categories such as forests, water bodies, urban areas, 
and agricultural land. In contrast, a taxonomy for object detection might focus on specific 
objects like buildings, vehicles, or infrastructure. The taxonomy’s representation of classes 
and subclasses should align with the semantic richness required by the application.

• Spatial and Temporal Dimensions: Geospatial intelligence applications often involve 
data that varies across spatial and temporal dimensions. Taxonomies should incorporate 
spatial information, such as geographic hierarchies, spatial relationships between objects, 
and spatial extent of phenomena. Similarly, temporal information, including time series 
analysis, temporal patterns, and event detection, should be considered in the taxonomy 
design to capture relevant dynamics in the data.

• Domain-Specific Considerations: Different geospatial domains, such as agriculture, urban 
planning, disaster management, and security, have specific requirements and challenges. 
Taxonomies should be adaptable to these domains, considering domain-specific features, 
constraints, and objectives. For example, in the agricultural domain, the taxonomy may 
include crop types, growth stages, and disease identification, while in the security domain, 
it may focus on threat identification, anomaly detection, and activity recognition.

• Cross-Domain Integration: While adaptation to specific applications is crucial, taxonomies 
should also facilitate cross-domain integration and interoperability and should allow for 
knowledge sharing and transfer across different geospatial intelligence domains, enabling 
ML models trained in one domain to be leveraged in another promoting the reuse and 
repurposing of ML models, reducing redundancy, and enhancing efficiency.

• Evolution and Scalability: Taxonomies need to be flexible and adaptable to evolving needs 
and emerging technologies. ML algorithms and techniques continually evolve, requiring 
taxonomies to be updated accordingly. Scalability is also essential to accommodate new 
data sources, modalities, and dimensions that may arise in the future.

4.5.3. Quality Measures

A specific comment needs to be dedicated to the “automated generation of quality measures.” 
Generating quality measures automatically for the model can be helpful, such as evaluating the 
model automatically on a validation or test set specific to the target task.

However, it is essential to consider the limitations of such measures and the implication of 
validating the measures within a particular application context. Moreover, it is important 
to acknowledge that the ultimate assessment of the model’s quality lies in the information 
extracted from the model by the model’s users. While automated measures are valuable 
for evaluating the model before deployment, the effectiveness of the automated measures 
diminishes when compared to the feedback and results obtained from the actual utilization 
of the model. Therefore, considering user feedback is essential as the primary indicator of the 
model’s quality.
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4.5.4. Could/should the ML Models’ metadata describe a “performance 
envelope” based on the distribution of characteristics in the training data 
the model was ultimately derived from?

ML model metadata could and should describe a “performance envelope” based on the 
distribution of characteristics in the training data from which the model was derived. This 
performance envelope can provide valuable information about the expected performance and 
behavior of the model when applied to new data. Users can make more informed decisions 
when selecting and applying ML models by automatically deriving and incorporating the 
performance envelope into the metadata. Performance metadata supports better matching 
models to specific requirements and understanding the potential performance variations in real-
world scenarios, ultimately improving the reliability and trustworthiness of the model in practical 
applications.

The performance envelope should describe the range or variability of the model’s performance, 
considering the characteristics of the training data distribution which can include statistical 
measures such as accuracy, precision, recall, F1 score, or any other relevant metrics that indicate 
the model’s performance across different subsets or variations of the training data.

Deriving such information can be achieved through automated methods. By analyzing the 
training data and evaluating the model’s performance on multiple subsets or variations of the 
data, statistical measures can be computed to define the performance envelope. This process 
can be facilitated by using techniques such as cross-validation or bootstrapping.

Automated derivation of the performance envelope requires careful consideration and 
appropriate validation to ensure its accuracy and reliability involving systematically assessing 
the model’s performance across representative subsets of the training data and aggregating the 
results to provide a comprehensive understanding of the model’s capabilities. D’Amour et al., 
2022 found that ML models often exhibit unexpectedly poor behavior when deployed in real-
world domains. This drop in performance was identified as being caused by underspecification, 
where observed effects can have many possible causes. Recommendations included thoroughly 
testing models on application-specific tasks, in particular, to check that the performance on 
these tasks is stable.

Including the performance envelope in the ML model’s metadata enhances transparency and 
helps users assess the model’s reliability and suitability for specific tasks. The performance 
envelope provides insights into the expected performance variations, strengths, and limitations 
of the model based on the characteristics of the training data distribution.

4.5.4.1. Considerations on Performance Metrics

When it comes to geospatial intelligence analysis (especially for security and defense 
applications), the accurate assessment of ML model performance metrics is crucial. However, 
establishing a meaningful connection between these metrics and the measures that an image 
analyst uses to evaluate the model’s performance is equally important. Bridging this gap is 
essential for ensuring the effectiveness and reliability of ML-driven geospatial intelligence.
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In the security and defense domain, geospatial intelligence plays a pivotal role in providing 
critical insights and supporting decision-making processes. The potential of ML models to 
enhance the accuracy and efficiency of geospatial analysis by automating tasks and extracting 
valuable information from vast amounts of data has been demonstrated. However, for these 
models to be truly effective, it is necessary to establish a framework that aligns the model’s 
performance metrics with the assessment criteria used by human analysts.

ML model performance metrics typically focus on quantitative measures such as precision, 
recall, accuracy, and F1 score. While these metrics provide valuable insights into the model’s 
overall performance, these metrics often fail to capture the nuanced assessments made by 
human analysts. Image analysts rely on expertise, contextual understanding, and domain-specific 
knowledge to evaluate the quality and relevance of intelligence derived from geospatial data.

To bridge this gap, an integrated approach is needed that combines both quantitative metrics 
and the subjective assessments of human analysts. By incorporating analyst-driven measures 
into the evaluation process, the interpretability and “understandability” of ML models is 
enhanced leading to more informed decision-making and increased trust in the intelligence 
derived from these models.

One approach to achieving this integration is to establish a feedback loop between the ML 
model and the image analyst which enables analysts to provide input and insights regarding the 
model’s outputs, highlighting any discrepancies or areas where the model may be performing 
sub optimally. These analyst-driven assessments can then be used to refine the model, 
iteratively improving its performance, and aligning the model more closely with the analyst’s 
expectations.

Furthermore, developing comprehensive performance evaluation frameworks that incorporate 
both quantitative metrics and qualitative assessments is essential. Such frameworks should 
consider the unique characteristics of geospatial intelligence analysis in security and defense 
applications, accounting for factors such as spatial accuracy, temporal consistency, and the 
ability to detect and track relevant objects or events.

In conclusion, ensuring the effectiveness of ML models in geospatial intelligence analysis 
requires a harmonious integration of quantitative performance metrics and the subjective 
assessments made by image analysts. By establishing a feedback loop and developing 
comprehensive evaluation frameworks, users can bridge the gap between model-driven metrics 
and human analysts’ estimates. This approach will lead to more accurate, reliable, and actionable 
geospatial intelligence, empowering decision-makers in their efforts to safeguard national 
security and defend against emerging threats.

4.5.5. Does the relationship between an ML Model and the training data 
set the model was ultimately derived from need to be represented?

Representing the relationship between an ML model and the training dataset the model 
was derived from is important to provide a comprehensive understanding of the model’s 
characteristics and limitations. This knowledge can foster transparency, reproducibility, and 
accountability and facilitate informed decision-making when applying the model to new tasks or 
domains which can enable researchers, practitioners, and users to assess the model’s strengths, 
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limitations, and potential biases. Metadata, documentation, or structured annotations are just 
some of the various means that can be used to represent such a relationship.

The representation should capture essential information about the dataset, including its source, 
composition, size, quality, and any relevant pre-processing steps applied and should also indicate 
how the model was trained using the dataset, including the specific data partitions (such as 
training, validation, and testing) and any data augmentation techniques used.

While the relationship between the ML Model and its training dataset can be represented 
manually through documentation, there is potential for the automated generation of such 
information. For example, automated tools can track and record the dataset used during the 
model training process, capture relevant statistics about the data, and generate metadata that 
describes the relationship between the model and its training dataset.

Automated methods, combined with appropriate data management practices, can enhance the 
efficiency of representing the relationship between models and training data. However, it is 
essential to guarantee the accuracy and reliability of the automated generation process and 
compatibility with specific data sources and model training frameworks.

Finally, one potential avenue to evaluate and enhance the representation of the relationship 
between an ML model and its training dataset is by exploring combining ML Operations (MLOps) 
tools that offer data versioning. OGC’s TDML can foster standardization, thus establishing 
a consistent and interoperable framework for capturing essential information about the 
dataset, ensuring efficient data versioning, and promoting transparency, reproducibility, and 
accountability in the ML workflow. By considering the incorporation of MLOps tools and TDML 
standards, researchers and practitioners can assess the viability of this approach in improving 
the comprehensive representation of the relationship between models and training data.

4.5.6. Implications of Dealing with Sensitive/Classified Data and 
Information

In the context of geospatial intelligence analysis for security and defense applications, handling 
sensitive and classified data poses unique challenges and considerations. As ML models, 
particularly those utilizing transfer learning, become increasingly prevalent in these domains, 
it is crucial to address the implications associated with using such models when dealing with 
sensitive/classified information.

• Data Security and Privacy: The nature of geospatial intelligence often involves the 
utilization of sensitive and classified data sources. ML models trained on these data 
sources must adhere to strict security protocols to protect the confidentiality, integrity, 
and availability of the information. Robust encryption, access controls, and secure data 
storage practices should be implemented to prevent unauthorized access and ensure data 
privacy. Synthetic data can also be used to overcome privacy and security concerns both 
through simulation of scenarios and objects and through the separation of simulation 
specifications, such as secure sensor parameters, from dataset output.

• Compliance with Regulations: ML models operating with sensitive/classified information 
must comply with relevant legal and regulatory frameworks governing the handling and 
protection of classified data. Compliance requirements may include adherence to national 
security guidelines, export control regulations, data protection laws, and contractual 
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obligations with data providers. Model developers and operators should be well-versed in 
these regulations to ensure full compliance throughout the ML lifecycle.

• Controlled Access and Usage: Access to sensitive/classified ML models should be strictly 
controlled and limited to authorized personnel with appropriate security clearances. The 
usage of these models should be monitored and robust auditing mechanisms should be in 
place to track and trace any potential unauthorized activities helping to mitigate the risk of 
data breaches, insider threats, or misuse of sensitive/classified information.

• Secure Model Transfer: When sharing or transferring ML models trained on sensitive/
classified data, additional precautions must be taken to protect the confidentiality of the 
information. Secure channels and encryption protocols should be used during the transfer 
process to prevent interception or unauthorized access to the model. Moreover, strict 
controls should be implemented to verify the identity and trustworthiness of the receiving 
parties to prevent inadvertent leaks or unauthorized use.

• Adversarial Attacks and Model Bias: ML models trained on sensitive/classified data may 
be vulnerable to adversarial attacks where malicious actors attempt to manipulate the 
model’s outputs or extract sensitive information. Robust security measures, including 
adversarial training and robust model validation techniques, should be employed to 
mitigate such threats. Additionally, model bias, which may inadvertently reveal sensitive 
information or perpetuate discrimination, should be carefully assessed, and addressed 
to ensure fair and unbiased geospatial intelligence analysis. The use of synthetic data to 
both mitigate and test bias and other model vulnerabilities is likely to become increasingly 
relevant as a technique as costs of real sensor data acquisition limit the diversity of 
training scenarios and data available.

• Secure Collaboration and Information Sharing: Collaboration among multiple 
organizations or agencies involved in geospatial intelligence analysis necessitates secure 
mechanisms for information sharing. Protocols for secure federated learning or encrypted 
model sharing can enable collaborative model development and knowledge exchange 
while protecting sensitive/classified information. Secure data anonymization techniques 
can also be employed to share aggregated insights without compromising individual data 
privacy.

In summary, leveraging ML transfer learning capabilities in sensitive/classified geospatial 
intelligence analysis requires comprehensive measures to address data security, privacy, 
compliance, controlled access, and secure collaboration. Adhering to stringent security 
protocols, complying with regulations, and implementing robust data protection practices 
are paramount to ensure the responsible and effective use of ML models when dealing with 
sensitive/classified information. By considering these implications, stakeholders can harness 
the power of ML transfer learning while safeguarding national security and protecting classified 
data.
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5 SUMMARY & RECOMMENDATIONS
 

For the OGC Testbed-19 activity, transfer learning was interpreted more broadly than is 
generally found in the literature, with implementations/testing including the following.

• Transferring models between application domains — Transferring models between 
application domains was explored by GMU and Pixalytics in terms of taking a Machine 
Vision model (SAM) and applying it to remote sensing applications. The GMU crop 
type classification results showed that segmentation could be used to deal with noisy 
outputs, making in-field crop classification more consistent. The experiments performed 
by Pixalytics showed the promise of applying SAM to hyperspectral data, with a trade-off 
needed for adding complexity versus completeness of the scene segmentation.

• Transferring models between geographical locations — Transferring models between 
geographical locations was explored by GMU in terms of transferring field-level in-
season crop mapping between countries, with an initial test showing the potential for 
transferability.

• Transferring models from synthetic datasets to real EO data — Rendered.ai explored 
transferability between training datasets in terms of generating synthetic 3D data of cargo 
planes as inputs for training a machine vision model. The results supported the hypothesis 
that transfer learning outcomes can be improved when applied to model backbones 
trained on synthetic data versus those trained on generic data which can be especially 
impactful when the total number of real images available is small, as is often the case in 
computer vision applications, particularly in the GEOINT space.

Answering the research questions, in Section 4, identified the importance of the FAIR principles, 
which were tested by GeoLabs & GMU through taking the GMU model and incorporating it into 
a Machine Learning inference-as-a-service approach. The inference service architecture was 
developed during the Testbed, based on the ZOO Project and NVIDIA Inference Service Engine. 
The GMU model was originally developed in Keras, and transferred into PyTorch for upload and 
then inferencing.

In parallel with the Testbed activity, the OGC Training Data Markup Language for Artificial 
Intelligence (TrainingDML-AI) Standards Working Group (SWG) have been expanding the SWG’s 
activities from considering just training data to models. As part of the SWG’s activity, the 
training dataset standard is implemented as a SpatioTemporal Asset Catalog (STAC) extension 
and there are relevant (proposed) extensions for deep/machine learning models.

5.1. Best practice ideas
 

Through reflecting on the research questions, best practices were identified:

OPEN GEOSPATIAL CONSORTIUM 23-033 73



1. define standards to achieve interoperability among/between Machine Learning 
(ML) models and ensure they are adequately described to enable efficient re-use 
through transfer learning applications;

2. define (and agree on) a minimum set of key aspects to be included in the ML 
Model metadata, including:

a) representing the relationship between an ML model and the training 
dataset it was derived from;

b) standardization, collaboration, and the establishment of common 
taxonomies within specific domains or across communities;

c) accurate assessment of ML model performance metrics;

d) generating automatically derived quality measures; and

e) describing a “performance envelope” based on the distribution of 
characteristics in the training data;

3. management practices need to be implemented to enable access to an ML model 
for transfer learning applications; and

4. dealing with sensitive/classified information.

5.2. Applicable standards & specifications
 

The following standards & specifications were reviewed and/or used. * ISO 19115-1:2014
defines the schema required for describing geographic information and services by means of 
metadata.

• The Training Data Markup Language for Artificial Intelligence (TrainingDML-AI) Part 1: 
Conceptual Model developed by OGC TrainingDML-AI (TDML) Standards Working Group
is developing a model language to describe models.

• ONNX as a widely used exchange format framework for ML models, used for the model 
representation.

• STAC extensions for deep/machine learning models, proposed rather than mature.

• TensorFlow Model Card Toolkit (MCT) library that streamlines and automates the 
generation of Model Cards — ML documents that provide context and transparency into a 
model’s development and performance.

• The Data Catalogue Vocabulary (DCAT) v2.0 is designed to facilitate interoperability 
between data catalogs published on the Web.
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• OGC Web Processing Service (WPS) Standard or OGC API — Processes to allow users to 
interact with the ML models.

• OGC CDB Version 2: Core Standard (Draft) specifies requirements (rules) defining a 
standardized model and structure for a single, versionable, and virtual representation of 
the earth.

5.3. Next steps for the experiments
 

ML models were implemented and stored using popular deep learning frameworks that, through 
open-source libraries, reduce the need to write to code: examples include Keras, PyTorch and 
TensorFlow. These frameworks have their own internal methodologies for storing models. For 
example, for TensorFlow the model is code while for Keras the model is stored in an HDF5 
file and for PyTorch it is a Python object structure stored in a Pickle file. ONNX is often used 
to transfer models between frameworks, such as PyTorch to ONNX to TensorFlow working 
to overcome the problem of framework lock-in by providing a universal intermediary model 
format. The disadvantage is that the model and its metadata (e.g., weights) are stored but not the 
broader descriptive metadata that a different user running that model would know everything 
that is needed. Therefore, approaches and methods for storing this richer metadata is required.

The simulated data results confirm the potential impact of synthetic data in the field of 
geospatial computer vision applications and also posed new questions to be answered. For 
example, more work can be done to understand the impact of increased diversity in 3D model 
inputs, modifiers, and backgrounds.

Based on the current experiment of transferring models between geographical locations, several 
potential issues may still affect the crop type classification result. The following issues will be the 
focus of our next phase of investigation.

1. Limitations in Feature Selection: In crop type classification tasks, the ML model 
primarily relies on NDVI time series due to the series’ significant contribution 
to classification accuracy. However, this approach may not be sufficient for 
certain crops, like canola, where other important features are necessary for more 
accurate classification. The current study did not include these features, which 
could lead to lower classification accuracies.

2. Variability in Crop Growth Conditions: In regions where climate and irrigation 
conditions significantly differ from those in the training regions, the NDVI time 
series for the same crop can vary substantially. This variability can lead to a 
decrease in classification accuracy. However, with acceptable accuracy, the model 
can still accurately identify crops in regions where these conditions only slightly 
differ.

3. Phenological and Crop Calendar Differences: There are notable variations in 
crop growth stages and planting/harvesting times across different regions. For 

OPEN GEOSPATIAL CONSORTIUM 23-033 75

https://www.ogc.org/standard/wps/
https://ogcapi.ogc.org/processes/
https://portal.ogc.org/files/104639


instance, the growing season for cotton in China lasts longer than in the United 
States, which may result in misclassification.

4. Data Selection and Validation Challenges: The training samples for this 
experiment were sourced from CDL, which might contain errors. Although a 
95% classification confidence threshold was used to enhance the training data’s 
reliability, this method has its limitations. Consequently, using ground-surveyed 
samples remains crucial for validating results in real-world applications.

5.4. Next steps for the OGC COSI program
 

The storage of additional ML model metadata to the required weights and parameters is being 
investigated by the TrainingDML-AI SWG alongside the broader community through initiatives 
such as the STAC extensions. There are also overlaps with OGC API activities in that the 
model, once stored, needs to be interacted with, as examined within this Testbed. Therefore, 
further support for coordination/bringing together these OGC and broader activities would 
continue to develop an approach which could lead to a standard (or standards) for the efficient 
and standardized storage of ML models. This activity has focused on ML models related to 
EO applications, so there needs to be discussion regarding applicability to broader geospatial 
applications.

In terms of implementation, unique naming for ML models would require an authority and 
associated policies for maintaining a registry/controlled vocabulary of names. Also, a curated 
Common Database (CDB) structured datastore could be an ideal repository for ML model; with 
consistent attribution semantics applied.
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ADES Application Deployment and Execution Service

AI Artificial Intelligence

AP Application Package

API Application Programming Interface

ARD Analysis Ready Data

AWS Amazon Web Services

CEOS Committee on Earth Observation Satellites

DML Data Markup Language

EMS Exploitation Platform Management Service

EO Earth Observation

ER Engineering Report

ESA European Space Agency

FAIR Findability, Accessibility, Interoperability, and Reusability

GMU George Mason University

ML Machine Learning

OGC Open Geospatial Consortium

ONNX Open Neural Network Exchange

STAC SpatioTemporal Asset Catalog

SWG Standards Working Group

TD Training Data TDML: TrainingDML-AI
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TDS Training Dataset

TrainingDML-AI Training Data Markup Language for Artificial Intelligence

UML Unified Modeling Language
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