
OGC Testbed-14
ADES & EMS Results and Best Practices Engineering

Report

Table of Contents
1. Summary . Ê4

1.1. Requirements & Research Motivation . Ê4

1.2. Prior-After Comparison . Ê4

1.3. Recommendations for Future Work . Ê5

1.4. Document contributor contact points . Ê7

1.5. Acknowledgements . Ê7

1.6. Foreword . Ê7

2. References . Ê8

3. Terms and definitions . Ê9

3.1. Abbreviated terms . Ê9

4. Overview . Ê11

5. Recap Of Work Done In Testbed-13 . Ê12

5.1. ADES in Testbed-13 . Ê13

5.2. AMC in Testbed-13 . Ê14

5.3. WPS in Testbed-13 . Ê14

6. Discussion of Sponsor Requirements . Ê15

7. Solution Overview . Ê17

7.1. Architecture . Ê17

7.2. Interfaces . Ê18

7.2.1. WPS-T REST/JSON. Ê18

7.3. Sequence of Operations . Ê19

7.3.1. Application deployment (Step 1) . Ê21

7.3.2. Application discovery and workflow design (Step 2) . Ê23

7.3.3. Workflow Deployment (Step 3) . Ê26

7.3.4. Workflow Execution (Step 4) . Ê28

7.3.5. EMS Execution Steps . Ê31

7.3.6. EMS Deployment on ADES (Step 6) . Ê32

7.3.7. EMS Execution on ADES (Step 7) . Ê34

8. Execution Management Service . Ê36

8.1. Spacebel. Ê36

8.2. Geomatys . Ê36

8.2.1. Security . Ê36

8.2.2. Catalogue communication . Ê37

8.2.3. ADES forwarding . Ê37

8.2.4. Workflow Execution . Ê37

8.2.5. EMS Deployment . Ê37

8.3. CRIM . Ê37

8.3.1. Deployment on Cloud . Ê38

8.3.2. WSO2 Security . Ê39

9. Application Deployment and Execution Service . Ê40

9.1. Spacebel. Ê40

9.2. Geomatys . Ê40

9.2.1. Security . Ê40

9.2.2. CWL Process . Ê40

9.2.3. PROBAV product files . Ê41

9.2.4. Quotations and bills . Ê41

9.2.5. ADES Deployment . Ê41

9.3. CubeWerx . Ê41

9.3.1. ADES endpoints . Ê41

9.3.2. Conformance Classes . Ê42

9.3.3. Extensions . Ê42

9.3.4. REST API. Ê42

9.3.5. Application program execution . Ê44

9.3.6. Access control model . Ê46

9.3.7. Security considerations . Ê46

10. Issues of Interest . Ê50

10.1. OpenSearch results pagination . Ê50

10.1.1. Handling complexity of OpenSearch . Ê50

10.2. Quotation API . Ê50

10.3. Error handling . Ê51

10.4. Authentication between EMS and ADES . Ê51

10.5. CRIM API recommendations . Ê51

10.6. WPS Transactional specification . Ê51

10.7. WPS and WPS-T REST/JSON API. Ê52

10.8. File format, name and extension . Ê52

10.8.1. Filename and extension . Ê52

10.8.2. Specific format . Ê53

10.9. Multiple Outputs . Ê53

10.10. Application execution recommendations . Ê54

10.11. processExecuteUrl . Ê54

10.12. Using EO Image HTTP URLs as ADES inputs . Ê54

11. TEP Client . Ê55

Appendix A: JSON file for a Deploy Request . Ê62

Appendix B: CWL file for a complete workflow . Ê64

Appendix C: JSON file for an ADES Execute Request . Ê66

Appendix D: JSON file for parameters of a workflow . Ê67

Appendix E: Revision History . Ê68

Appendix F: Bibliography . Ê69

Publication Date: 2019-02-08

Approval Date: 2018-12-13

Submission Date: 2018-11-21

Reference number of this document: OGC 18-050r1

Reference URL for this document: http://www.opengis.net/doc/PER/t14-D009

Category: Public Engineering Report

Editor: Paulo Sacramento

Title: OGC Testbed-14: ADES & EMS Results and Best Practices Engineering Report

OGC Engineering Report

COPYRIGHT

Copyright (c) 2019 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Engineering Report should not be
referenced as required or mandatory technology in procurements. However, the discussions in this
document could very well lead to the definition of an OGC Standard.

1

http://www.opengis.net/doc/PER/t14-D009
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and
subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and
any associated documentation, to deal in the Intellectual Property without restriction (except as set
forth below), including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to
whom the Intellectual Property is furnished to do so, provided that all copyright notices on the
intellectual property are retained intact and that each person to whom the Intellectual Property is
furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include,
in addition to the above copyright notice, a notice that the Intellectual Property includes
modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY
PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS
PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR
HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE
INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE USERÕS OWN RISK. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS
TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM
ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN
CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF
THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the
Intellectual Property together with all copies in any form. The license will also terminate if you fail
to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of notice of such
termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSORÕs sole opinion be likely to infringe, any patent, copyright,
trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may
terminate this license without any compensation or liability to you, your licensees or any other
party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual
Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all
or part of the Intellectual Property shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Intellectual Property without prior written authorization of LICENSOR
or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize
you or any third party to use certification marks, trademarks or other special designations to

2

indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to
this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is
hereby expressly excluded. In the event any provision of this Agreement shall be deemed
unenforceable, void or invalid, such provision shall be modified so as to make it valid and
enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or
remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or
otherwise exported or reexported in violation of U.S. export laws and regulations. In addition, you
are responsible for complying with any local laws in your jurisdiction which may impact your right
to import, export or use the Intellectual Property, and you represent that you have complied with
any regulations or registration procedures required by applicable law to make this license
enforceable.

3

Chapter 1. Summary
This Engineering Report (ER) describes best practices and results gathered through the work
performed in the Exploitation Platforms Earth Observation Clouds (EOC) Thread of OGC Testbed-14
concerning the Application Deployment and Execution Service (ADES) and the Execution
Management Service (EMS). Both the ADES and EMS were identified by the European Space Agency
(ESA), beforehand, as essential elements of a Thematic Exploitation Platform (TEP).

In the context of a generic Earth Observation Exploitation Platform ecosystem, populated by TEPs
and Mission Exploitation Platforms (MEPs), which make use of cloud computing resources for Earth
Observation data processing, ESA has established two fundamental building blocks within a TEP,
with different functions, the ADES and the EMS. Users interact with a TEP using a Web Client, and
the TEP contains a EMS and a ADES. The EMS includes most of the control logic, required for
deploying and executing applications in different MEPs and TEPs, the chaining thereof, and the
overall coherence of the execution chain (e.g. gathering all outputs and enabling their presentation
to the user by a client sensibly). The ADES instead is responsible for the single application
deployment and execution on a specific platform. Therefore, it is expected that there are ADES
instances both in a TEP and in the individual MEPs.

The Testbed-14 Participants have experimented with different options for what concerns the
functionality allocated to each of the two components, the information required by each of them
and the interface requirements between them in order to produce a consistent chain, compliant
with ESAÕs objectives (as the Sponsor). This report describes these experiments, providing their
results and suggesting best practices on how the two services should be engineered in the
Exploitation Platform context.

The OGC Web Processing Service (WPS) 2.0 standard is of particular relevance given that it is well-
established in the OGC Web Service context, specifically that concerning processing, its
interoperability value has been clearly demonstrated, and it therefore provides a useful
mechanism for standardizing interfaces between components of heterogeneous provenance and
implementation.

1.1. Requirements & Research Motivation
As introduced above, the ADES and EMS are two architectural blocks with different functions
within TEPs/MEPs. They are required to support application deployment, execution and chaining,
as well as the agreed authentication and authorization mechanisms. All interfaces, including the
security ones, have to be standard so as to achieve the SponsorÕs interoperability goal in the
heterogeneous Exploitation Platform context.

Given that several options are possible for what concerns the functionality allocation and interface
details, it is important to record those that were subject to experiment in Testbed-14, as well as the
results of the experiments. Finally, it is important to recommend best practices in doing so.

1.2. Prior-After Comparison
In Testbed-13, a simpler architecture was considered, with just an Application Management Client

4

(AMC) and an Application Deployment and Execution Service (ADES) involved, i.e. no Execution
Management Service (EMS). The interface between the AMC and the ADES was based on WPS, in its
traditional XML encoding, with two alternative implementations having been pursued, one relying
on standard WPS 2.0 and two dedicated - but regular - WPS processes for deploying and
undeploying processes/applications in the ADES; and the other one relying on the so-called
transactional extension of WPS, which has not been standardized but is described in a OGC
discussion paper [1]. For more details, please refer to [2].

In Testbed-14, WPS is again the key OGC standard involved and there was consensus in using the
transactional extension, both for the client<!EMS and for the EMS<!ADES interface. Furthermore,
in line with one of the SponsorÕs requirements, the Extensible Markup Language (XML) encoding
was dropped in favor of one based on Representational State Transfer (REST)/JavaScript Object
Notation (JSON) which is also not yet an OGC standard but a version of which was submitted for
public review by the WPS Standards Working Group (SWG) during the timeline of the Testbed. In
fact, the WPS 2.0 SWG and the Testbed-14 EOC Participants coordinated to align, to the maximum
extent possible, the work and lessons learned in Testbed-14 with the evolving WPS 2.0 REST/JSON
specification.

1.3. Recommendations for Future Work
The OGC WPS 2.0 standard was already a key part of the work done in Testbed-13 and continued to
be so in Testbed-14. Indeed, given that one of the core aspects of Earth Observation Exploitation
Platforms is the data processing, WPS is a natural fit. At the same time, not only in Testbed-13 but in
general, variants and possibilities related to WPS, such as the Transactional extension (WPS-T) and
the reliance on REST bindings and JSON encoding, are of increasing interest. The growing
popularity of WPS-T and REST/JSON is because they bring the OGC, and WPS in particular, closer to
the mainstream web and technological realms.

Given that a significant amount of effort in the EOC thread of Testbed-14 has been dedicated to
experimenting with these WPS variants and possibilities, this work is expected to be of high interest
to the WPS 2.0 SWG. The relevance of the Common Workflow Language (CWL) to the OGC should
also be investigated. It could be particularly interesting for the Workflow DWG and could be
considered as a potential future Community Standard.

Future work should be dedicated to consolidating the WPS REST API that has been proposed by the
WPS SWG and contributed to by Testbed-14 EOC thread Participants, as well as initiating a
standardization path for the transactional extension of WPS (WPS-T). A specific issue of interest
(but also risk) resides in how to transform a message-based protocol such as WPS (with its
traditional GetCapabilities , DescribeProcess, Execute operations) into a resource-based protocol
(WPS REST), where resources such as processes and jobs are managed using the basic HTTP
operations (GET, POST, PUT, etc.). A straightforward conversion (i.e. simply mapping the XML
messages into REST/JSON) may result in APIs which are not intuitive and are semantically unclear.
It is therefore important to dedicate time and effort to properly designing a resource-based version
of a previously existing XML-based protocol. Another relevant and general issue in this discussion
is how to transform/encode XML into JSON content. In coordination with the WPS 2.0 SWG, several
smaller or one or two larger Change Requests can be prepared so as to start the standardization
path for WPS-T and the WPS REST/JSON work.

5

Further areas of interest for future work are:

¥ the standardization of protocols and mechanisms for the ADES to fetch data required for
application execution (users shall not need to change their applications due to specific data
fetching requirements)

¥ more sophisticated and dynamic ways of associating data collections to execution platforms (the
one used in the Testbed is completely static)

¥ the ability for systems involved in the flow to communicate between them, in an unambiguous
and well-understood manner, lists of products to process and information on whether a
catalogue search has been performed to determine them already (or if it is still required); see
also next point

¥ an ADES can be used for single application executions but also for bulk processing (operating
simply on an AOI and TOI, rather than receiving a product or list of predefined products to
process). The bulk processing scenario has not been explored in Testbed-14 and could be in
future ones

¥ the issue of application visibility and the level at which it is managed (Client, EMS, ADES), as
well as the propagation/delegation of user credentials for authentication and authorization, if
this is not simply considered an orthogonal discussion. In the work performed, it has been
considered that MEPs are opaque and changing application visibility is only possible at EMS
level.

¥ the ability to rely on authoritative codespace definitions

¥ the ability to rely on an authoritative list and/or well-understood mapping of mimeTypes (e.g.
application/x-binary, application/octet-stream, plain/text) useful for the purposes of the EOC
thread (to avoid ambiguity in understanding and usage - for example specify that application/x-
binary is to be always used for images and plain/text for WKT). For EO Images in particular, a
much more detailed classification would also be useful (to distinguish between different
formats used for a given mission, e.g. Sentinel-2 hosted on AWS and IPT Poland, and formats
from different missions, e.g. Sentinel-2 and Landsat-8)

¥ the asynchronous quotation model (with a status property that can be polled), particularly as
part of the WPS REST/JSON API

¥ standardization or creation of Best Practices for platform identifiers (TEPs, MEPs such as
"Sentinel-2 MEP @ XYZ" or "Proba-V MEP @ ABC") so they can be referred to univocally, maybe
taking advantage of other standards (e.g. skos:prefLabel in Global Change Master Directory,
http://gcmdservices.gsfc.nasa.gov/static/kms/platforms/platforms.rdf)

¥ WPS support for multiple outputs (see Chapter 10 for more information. The WPS SWG should
look at making this more flexible)

¥ how to handle OGC Web Service interfaces providing process inputs/outputs

The work described in the ER makes the case for how OGC standards are helpful in such a densely
populated ecosystem of very heterogeneous entities, technologies and implementations such as the
Exploitation Platforms one. For OGC therefore, the work described in this ER is deemed extremely
relevant in satisfying the needs of the European Space Agency as one of its Strategic Partners.

6

http://gcmdservices.gsfc.nasa.gov/static/kms/platforms/platforms.rdf

1.4. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization

Paulo Sacramento Solenix

Patrick Jacques Spacebel

Christophe Noel Spacebel

Peter Vretanos CubeWerx

Jerome Gasperi Geomatys

Guilhem Legal Geomatys

Tom Landry CRIM

David Byrns CRIM

Francis Charette-Migneault CRIM

1.5. Acknowledgements
Besides the Tested-14 Participants, the following institutions have supported the activities of the
thread:

¥ Deimos-Imaging

¥ VITO

¥ The FedEO Team at Spacebel

¥ ATOS CVC Romania

1.6. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

7

Chapter 2. References
The following normative documents are referenced in this document:

¥ OGC: OGC 06-121r9, OGC¨ Web Services Common Standard, 2010 [https://portal.opengeospatial.org/

files/?artifact_id=38867&version=2]

¥ OGC: OGC 14-065r2, OGC Web Processing Service 2.0.2 Interface Standard Corrigendum 2, 2018
[https://portal.opengeospatial.org/files/14-065r2]

¥ Commonwl.org: Common Workflow Language Specifications, v1.0.2 [https://www.commonwl.org/

v1.0/]

¥ OGC: OGC 13-026r8, OGC OpenSearch Extension for Earth Observation 1.0, 2016
[https://portal.opengeospatial.org/files/13-026r8]

¥ OGC: OGC 13-032r8, OGC OpenSearch Geo and Time Extensions 1.0.0, 2014
[https://portal.opengeospatial.org/files/?artifact_id=56866]

8

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2
https://portal.opengeospatial.org/files/14-065r2
https://www.commonwl.org/v1.0/
https://portal.opengeospatial.org/files/13-026r8
https://portal.opengeospatial.org/files/?artifact_id=56866

Chapter 3. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply.

3.1. Abbreviated terms
¥ ACL Access Control List

¥ ADES Application Deployment and Execution Service

¥ AOI Area Of Interest

¥ AP Application Package

¥ AWS Amazon Web Services

¥ CFP Call For Participation

¥ CORS Cross-Origin Resource Sharing

¥ CP CheckPoint

¥ CWL Common Workflow Language

¥ DACS Distributed Access Control System

¥ DWG Domain Working Group

¥ ECS Elastic Container Service

¥ EMS Execution Management Service

¥ EO Earth Observation

¥ EOC Earth Observation Clouds

¥ EP Exploitation Platform

¥ ER Engineering Report

¥ ESA European Space Agency

¥ FEDEO Federated Earth Observation

¥ GUI Graphical User Interface

¥ IaaS Infrastructure as a Service

¥ ICT Information and Communications Technology

¥ IdP Identity Provider

¥ IPT Innovative Platform Testbed (Poland)

¥ IT Information Technology

¥ JSON JavaScript Object Notation

¥ M2M Machine-2-Machine (interface)

¥ MEP Mission Exploitation Platform

9

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2

¥ NRCan Natural Resources Canada

¥ OAS3 OpenAPI 3 Specification

¥ OSDD OpenSearch Description Document

¥ OWC OWS Context

¥ OWS OGC Web Services

¥ PaaS Platform as a Service

¥ PEP Policy Enforcement Point

¥ PFC Pacific Forestry Center

¥ QoS Quality of Service

¥ REST REpresentational State Transfer

¥ SNAP SeNtinel Application Platform

¥ SOAP Simple Object Access Protocol

¥ STS Security Token Service

¥ SWG Standards Working Group

¥ TEP Thematic Exploitation Platform

¥ TIE Technology Integration Experiments

¥ TOI Time Of Interest

¥ UI User Interface

¥ URI Uniform Resource Identifier

¥ URL Uniform Resource Locator

¥ VM Virtual Machine

¥ WKT Well-Known Text

¥ WFS Web Feature Service

¥ WPS Web Processing Service

10

Chapter 4. Overview
Section 5 briefly recaps the work done in Testbed-13 for what concerns the EMS and the ADES, as a
technical introduction to the topics dealt with in this Engineering Report.

Section 6 discusses the sponsor requirements to which the identified solutions respond to.

Section 7 summarizes the final solution as implemented by Participants for what concerns the EMS,
the ADES and the interface between them. For several details concerning the authentication,
authorization, quotation and billing aspects, the reader is referred to the separate Testbed-14
Engineering Report, [3], which deals specifically with those.

Section 8 deals with aspects specific to the EMS, with contributions from each of the implementing
Participants.

Section 9 deals with aspects specific to the ADES, with contributions from each of the implementing
Participants.

Section 10 lists issues of interest and findings that the work performed by the Participants allowed
to identify. These include accepted limitations and assumptions made for the purpose of the
Testbed, that would have to be addressed in a more operational context, as well as particularly
relevant trade-offs that were done to inform decisions.

Section 11 presents the TEP Client through screenshots which illustrate the main functionality. Even
though the CFP did not require the client to be described in the ERs - this document focuses on the
EMS and the ADES and the two other ERs focus on the Application Package and on the
Authentication, Authorization, Billing and Quotation aspects - it was considered that some content
on the client would also be useful.

11

Chapter 5. Recap Of Work Done In Testbed-
13
The architecture established in the EOC thread of Testbed-13 by the Sponsor and embraced by the
Participants consisted of two tiers: an Application Management Client (AMC) and an Application
Deployment and Execution Service (ADES). Several implementations of these (3 each) were
implemented so as to demonstrate interoperability and prove that different Participants, even in
charge of implementing only one of the tiers, could successfully integrate their components using
an OGC standard.

The interface between the AMC and the ADES was based on WPS, in its traditional XML encoding,
with two alternative implementations having been pursued. One implementation relied on
standard WPS 2.0 and two WPS processes for deploying and undeploying processes/applications in
the ADES. The other implementation relied on the so-called transactional extension of WPS, which
has not been standardized but is described in a OGC discussion paper [1].

The Testbed-13 work explored cloud computing service models of Platform-as-a-Service (PaaS) and
Infrastructure-as-a-Service (IaaS). The figure below depicts the Testbed-13 architecture and flow,
which allowed users (Jim and Marco) to interact with the two above-mentioned tiers of a TEP/PaaS
(the AMC and the ADES) in order to deploy and execute Earth Observation (EO) applications
running on two IaaS providers, namely Amazon Web Services (AWS) and IPT Poland. The figure
includes the security (authentication and authorization) components (CP, IdP, STS), as well as the
App/Docker Registry/Hub and the Central Geospatial Resource Catalogue. Due to lack of time,
interactions with the security components were not implemented in Testbed-13. Containerization in
Docker and registration of applications in the App/Docker Registry/Hub were pre-requisites for any
applications that were deployed and executed. The Central Geospatial Resource Catalogue consisted
of a deployment of Federated Earth Observation (FEDEO) gateway software, provided as in-kind
contribution by the Sponsor.

12

Figure 1. Testbed-13 Architecture and Flow

More details can be found in [2]. Additional findings on interoperability and portability of cloud
computing architectures can be found in [4], also part of Testbed-13 EOC thread. The deliverables
demonstrated data processing tools for deployment, management, and processing of EO data using
an OGC WPS. As such, the proposed interfaces are coherent with the AMC, ADES and AP principles
described here.

5.1. ADES in Testbed-13
The Application Deployment and Execution Service in Testbed-13 was a single server-side
component and it was in charge of all aspects pertaining to the deployment and execution of EO
applications on different cloud providers. It therefore shielded instances of the Application
Management Client from all infrastructure details. In the canonical case, it was exposed as a WPS
interface, with two pre-existing processes dedicated to the deployment and undeployment of
applications. In the alternative implementation, it exposed a WPS-T interface in-line with [1], which
adds two new operations to the basic WPS ones, namely DeployProcess and UndeployProcess.

The ability to register and unregister processes, just as any other WPS server, makes the ADES also
a defacto repository and catalogue of processes that can be discovered using a GetCapabilities
request and described in detail by issuing a DescribeProcess request for the process of interest.
Thus, in Testbed-13, the ADES also performed the role of process/application catalogue, available
for query by clients.

More details can be found in [2].

13

5.2. AMC in Testbed-13
The Application Management Client in Testbed-13 consisted of a WPS client implementing the WPS
XML binding with support for the Simple Object Access Protocol (SOAP), and relying on ADES
instances for all functionality. Briefly, the client allowed:

¥ a privileged user to register and unregister applications using a specified Application Package
format (see [5]) and dedicated processes exposed by ADES instances

¥ to browse, select and use previously registered applications (using the WPS GetCapabilities
operation)

¥ for applications requiring a catalogue search, to select a collection of interest, an Area-Of-
Interest (AOI) and Time-Of-Interest (TOI) through a dynamically-built GUI (using the WPS
DescribeProcess operation), perform queries and select a result

¥ execute applications, monitor execution conclusion and get results (using the WPS Execute,
GetStatus and GetResult operations)

More details can be found in [2].

5.3. WPS in Testbed-13
As described above, the OGC WPS protocol was the basis for the interface between the several AMC
and ADES instances in Testbed-13. It was used in its SOAP/XML bindings and encoding and, except
for the alternative approach pursued by one of the Participants, which relied on the WPS-T
extension described in [1], was the standard WPS 2.0 specification.

More details can be found in [2] and [4].

14

Chapter 6. Discussion of Sponsor
Requirements
The figure below, taken from the Call For Participation (CFP), illustrates the basic architecture
required by the Sponsor, consisting of the EMS and the ADES. The figure highlights that the same
ADES software can be executed within a TEP and within a MEP. The Web-Client is depicted as an
interface available to the TEP users (Alice and Bob) for accessing the TEP functionality, but it is
actually a separate Testbed-14 deliverable.

Figure 2. Testbed-14 Architecture from CFP

It must be highlighted that the diagram above has a misleading aspect concerning the
ADES(in TEP)!ADES(in MEP) interface which is depicted. In fact, during the Testbed, it was
agreed by all Participants, Sponsor and OGC that there should be no such interface and it is
the EMS directly orchestrating and dispatching the application executions to the ADES in a
MEP. The diagram presented in the next chapter contains the accurate flow.

The main requirements set out in the CFP can be enunciated as:

¥ ability to exercise a flow involving different mission and thematic exploitation platforms (MEPs
and TEPs)

¥ support for two different types of user: an application developer (Alice) and an application
consumer (Bob)

¥ ability to chain applications, where one uses the results of the other

¥ make use of standardized error handling and user messaging

¥ ensure users are authenticated and authorized to perform required operations

¥ allow users to manipulate application privacy settings for visibility, execution and
update/removal

These requirements are exercised by implementing the following scenarios (refer to the CFP for
complete details):

15

¥ Scenario 1: Alice , the application developer, loads a single application package in the TEP

¥ Scenario 2: Alice registers a basic chaining of applications on the TEP

¥ Scenario 3: Bob explores existing applications, selects the (chained) application registered by
Alice in scenario 2 and uses it (selecting collections, AOI, TOI as necessary, waiting for the TEP
EMS to orchestrate the several ADES instances in the MEPs, monitoring the execution and
getting the results)

The following architectural constraints relevant to the EMS and ADES functionality were specified
in the CFP:

¥ Each of the MEPs involved in the scenarios shall have an ADES in charge of application
registration, deployment, execution, modification (by authorized users)

¥ A TEP may include both an EMS and an ADES or just an EMS (i.e. relying on ADES in MEPs)

¥ The EMS is in charge of dispatching the application execution to the relevant ADES/MEP and
orchestrate the chaining

¥ All Machine-to-Machine (M2M) interfaces shall use RESTful architecture with JSON encoding

Further sponsor requirements and constraints related to billing, authentication and authorization
are discussed and addressed in [3].

16

Chapter 7. Solution Overview
This chapter describes the finally adopted solution in three sections. The first section details the
architecture, the second details the interfaces and the third explains the sequence of steps involved
in the main implemented flows. The implementation experiences of several Participants for the
EMS and ADES building blocks are described in the next chapters.

7.1. Architecture
The figure below depicts the architecture adopted by Testbed-14 Participants, with the main
building blocks and interfaces, as well as some implementation notes that highlight important
assumptions agreed between all stakeholders, including the Sponsor.

Figure 3. Final Testbed-14 EOC Thread Architecture

Three aspects in particular are worth noting as they represent changes with respects to the Sponsor
requirements or issues left open in the CFP that have been herewith addressed:

¥ The TEP Client does not interface with the FEDEO OpenSearch gateway, it simply collects AOI,
TOI and collection information from the user and sends these to the EMS as part of the
execution request. The EMS then interfaces with the OpenSearch gateway in order to identify
images of interest (a list) and the execution platform (see next point)

¥ The collection chosen by the user unequivocally identifies the execution platform (1-to-1
relationship), i.e. neither the Client nor the EMS need to implement any logic to determine it.
The execution platform also translates to a MEP, i.e. the collection choice determines the MEP
(see next point)

¥ For application execution, the EMS can rely both on ADES instances within the same TEP or
outside ADES instances within MEPs. Both scenarios are in line with the Sponsor requirements,
but only the latter has been exercised in the TIEs (the former is just a simpler case).

Particularly the first and second bullets above represent simplifications of the real scenario that
would need to be addressed in a more operational context. For what concerns the first bullet, if
instead it were the TEP Client or the ADES in charge of performing the search (or if this was a
possibility), further work and logic would be required between the elements involved in the flow, to

17

communicate the list of products to be processed and whether such a search had been performed
already or not.

7.2. Interfaces

7.2.1. WPS-T REST/JSON

The Testbed-14 EOC thread Participants cooperated in order to specify a WPS interface using a
RESTful protocol, JSON encoding and the transactional extension of WPS (WPS-T) described in [1].
Given that during the timeframe of the Testbed there was ongoing work by the WPS SWG to
generate a similar specification, except for the transactional aspect, the two parties coordinated to
ensure alignment. At the end of the Testbed, a Change Request to the WPS standard, consisting of
the agreed specification (and the numerous details involved) will be submitted to complete the
alignment.

This interface is used both between the TEP Client and the EMS and between the EMS and the ADES.

The complete specification, defined using OpenAPI (originally known as Swagger), can be found in
https://github.com/opengeospatial/D009-
ADES_and_EMS_Results_and_Best_Practices_Engineering_Report/blob/master/code/ades_wpst.json .
This machine-readable way of describing an interface details valid paths, supported HTTP methods
for each path, expected parameters (including whether they are mandatory or not) and the possible
responses (including the standard HTTP error codes).

The main resources and relevant details are listed in the table below.

Table 1. Resources of WPS-T REST interface

Resource/Path HTTP Method Purpose Notes

/ GET The landing page
provides links to the
API definition, the
Conformance
statements and the
metadata about the
processes offered by
this API

/processes

GET Retrieve available
processes

POST Deploy a process

/processes/{id}

GET Retrieve a process
description

DELETE Undeploy a process

/processes/{id}/jobs

GET Retrieve the list of jobs
for a process

POST Execute a process

18

https://github.com/opengeospatial/D009-ADES_and_EMS_Results_and_Best_Practices_Engineering_Report/blob/master/code/ades_wpst.json
https://github.com/opengeospatial/D009-ADES_and_EMS_Results_and_Best_Practices_Engineering_Report/blob/master/code/ades_wpst.json

Resource/Path HTTP Method Purpose Notes

/processes/{id}/jobs/{jobID}

GET Retrieve the status of a
job

DELETE Dismiss a job

/processes/{id}/jobs/{jobID}/result GET Retrieve the result(s) of
a job

/processes/{id}/quotations

GET Retrieve the list of
quotation ids for a
given process

See Note 1

POST Request a quotation for
a given process

See Note 1

/processes/{id}/quotations/{quotationID}

GET Retrieve quotation
information

See Note 1

POST Execute a quoted
process

See Note 1

/processes/{id}/visibility

GET Retrieve the visibility
status for a process

PUT Change the visibility
status for a process

/quotations GET Retrieve the list of all
quotation ids

See Note 1

/quotations/{quotationID}

GET Retrieve quotation
information

See Note 1

POST Execute a quoted
process

See Note 1

/bills GET Retrieve the list of all
bill identifiers

See Note 1

/bills/{billID} GET Retrieve bill
information

See Note 1

/conformance GET list all requirements
classes specified in the
standard (WPS
REST/JSON Binding
Core) that the server
conforms to

Note 1 : More information about the billing and quotation aspects is available in [3].

7.3. Sequence of Operations
This section describes in full detail the steps of the sequence of operations required for deploying
and executing both applications and workflows:

1. Alice deploys a newly developed application.

2. AliceÕs sister discovers the new application and builds a workflow including that application.

19

3. AliceÕs sister deploys the workflow.

4. Bob discovers the new workflow and executes it.

5. The EMS performs the EO Image Discovery.

6. The EMS triggers the deployment on the ADES.

7. The ADES executes the application.

Steps 5, 6 and 7 pertain to steps internal to the EMS, required to execute a workflow or application.

Once again, the security, quoting and billing aspects are not covered here as they belong to the scope of
[3].

The sequence of operations is shown in the diagram below.

Figure 4. Sequence diagram for main Testbed-14 EOC Thread flows

The execution of a simple application (following step 1) is not covered explicitly because the steps (5, 6
and 7 in particular) are similar to the execution of a workflow, except that the EMS in that case is only
a broker in front of the ADES.

For a more focused discussion of the Application Package format and its facets, the reader is referred to
[6]. That document contains a brief introduction of CWL and an explanation of its role in the Testbed
work.

20

7.3.1. Application deployment (Step 1)

Alice developed an application identified as 'MultiSensorNDVI'. She wants to make this application
available to the users of the TEP.

Using the TEP Client, Alice performs a Deployment request (step 1). The WPS-T REST HTTP POST
operation path is /processes , and the request message includes the following items:

¥ The Process Description: a standard (WPS) description of the application interface used by the
client. In particular, it includes a project-specific flag (EOImage) for Earth Observation Image
inputs, and it also references a CWL file providing information on the Docker image of the
application.

¥ The Execution Unit: the application binaries, packages and resources. In this case, this is a
reference to the Docker image.

¥ The identifier of the Profile (in this case, a Dockerized application).

{
Ê " processDescription " : {
Ê " process" : {
Ê " id " : " NDVIMultiSensor" ,
Ê " title " : " NDVIMultiSensor" ,
Ê " owsContext" : {
Ê " offering " : {
Ê " code" : " http://www.opengis.net/eoc/applicationContext/cwl " ,
Ê " content " : {
Ê " href " : " https://some-host/CWL/NDVIMultiSensor.cwl "
Ê }
Ê }
Ê } ,
Ê " abstract " : " Normalized Difference Vegetation Index (NDVI) from an input list
of satellite images. " ,
Ê " keywords" : [" NDVI"] ,
Ê " inputs " : [
Ê {
Ê " id " : " files " ,
Ê " title " : " Input Image " ,
Ê " formats " : [
Ê {
Ê " mimeType" : " application/zip " ,
Ê " default " : true
Ê } , {
Ê " mimeType" : " application/x-hdf "
Ê }
Ê] ,
Ê " minOccurs" : " 1" ,
Ê " maxOccurs" : " unbounded" ,
Ê " additionalParameters " : [
Ê {
Ê " role " :

21

" http://www.opengis.net/eoc/applicationContext/inputMetadata " ,
Ê " parameters" : [
Ê {
Ê " name" : " EOImage" ,
Ê " values" : [" true "]
Ê }
Ê]
Ê }
Ê]
Ê }
Ê] ,
Ê " outputs " : [
Ê {
Ê " id " : " output " ,
Ê " title " : " NDVI Images" ,
Ê " formats " : [
Ê {
Ê " mimeType" : " image/tiff " ,
Ê " default " : true
Ê }
Ê]
Ê }
Ê]
Ê } ,
Ê " processVersion" : " 1.0.0 " ,
Ê " jobControlOptions " : [
Ê " async-execute"
Ê] ,
Ê " outputTransmission " : [
Ê " reference "
Ê]
Ê } ,
Ê " immediateDeployment" : true ,
Ê " executionUnit " : [{
Ê " href " : " docker.registry/ndvims:latest "
Ê }] ,
Ê " deploymentProfileName" : " http://www.opengis.net/profiles/eoc/dockerizedApplication "
}

It is important to note that, even though the Application Package above is for a simple
application and not a workflow, CWL is still used . This is done so that, downstream, the ADES can
map inputs/outputs to the Docker and run it properly. In fact, this solves an open issue from Testbed-13
(see the stagein/stageout vs. environment variables discussion in [2] and [7]). Therefore, even if it can be
argued that this solution introduces a dependency on CWL even when only simple applications are
involved, the Participants believe that this dependency is justified. Furthermore, this dependency only
affects the EMS, not the ADES. ADES implementers can choose whether to rely on the CWL file (which
is passed seamlessly by the EMS) or not (i.e. rely only on the WPS Process Description). If using CWL,
the CWL-runner tool which is provided as part of the standard CWL toolset automatically manages the
stagein/stageout operations.

22

Participants also highlighted that alternatives to CWL for describing a container interface are few,
language-specific and are not exhaustive. CWL is a defacto standard language, providing the
appropriate flexibility and simplicity for describing all cases appearing when defining a command-line
interface. The risk of this dependency is therefore considered to be absolutely under control.

Following the request above, the TEP Client receives an acknowledgment of the successful deployment
of the process as illustrated below.

{
Ê " processSummary" : {
Ê " id " : " MultiSensorNDVI" ,
Ê " title " : " Multi Sensor NDVI " ,
Ê " abstract " : " NDVI is calculated after the two bands values Near Infrared and red. It
is calculated by this formula : NDVI = (NIR-Red)/(NIR+Red) " ,
Ê " keywords" : [
Ê " NDVI"
Ê] ,
Ê " version " : " 1.0.0 " ,
Ê " jobControlOptions " : [
Ê " async-execute"
Ê] ,
Ê " processDescriptionURL" : " http://some.domain/wps/processes/MultiSensorNDVI "
Ê }
}

7.3.2. Application discovery and workflow design (Step 2)

AliceÕs sister is preparing a processing chain workflow. She first needs to discover the applications
available on the TEP (step 2). The TEP Client can list a summary of the available processes.

The WPS-T REST HTTP GET operation path is /processes and the response is illustrated below.

23

{
Ê " processes" : [
Ê {
Ê " id " : " NDVIMultiSensor" ,
Ê " title " : " NDVIMultiSensor" ,
Ê " jobControlOptions " : [
Ê " async-execute"
Ê] ,
Ê " outputTransmission " : [
Ê " reference "
Ê] ,
Ê " processDescriptionURL" : " http://185.52.193.7/wps-
proxy/processes/GeomatysNDVIMultiSensor"
Ê } ,
Ê {
Ê " id " : " NDVIStacker" ,
[. . .]
Ê }
Ê]
}

As explained in [6], the chosen language to describe workflows in the EOC thread of Testbed-14 is CWL.
Therefore, for each application that Alice plans to include, the CWL file of the application needs to be
retrieved by the client using a DescribeProcess operation. In this instance, the EMS on the TEP
functions as a repository or catalogue of CWL files (pointed to by the corresponding WPS Process
Descriptions).

The WPS-T REST HTTP GET operation path is /processes/{processId} and the response illustrated below
includes the CWL reference which was provided in the OWS Context element during deployment.

24

{
Ê " process" : {
Ê " id " : " NDVIMultiSensor" ,
Ê " title " : " NDVIMultiSensor" ,
Ê " abstract " : " Normalized Difference Vegetation Index (NDVI) from an input list of
satellite images. " ,
Ê " owsContext" : {
Ê " offering " : {
Ê " code" : " http://www.opengis.net/eoc/applicationContext/cwl " ,
Ê " content " : {
Ê " href " : " https://some-host/CWL/NDVIMultiSensor.cwl "
Ê }
Ê }
Ê } ,
Ê[. . .]
Ê } ,
Ê " processVersion" : " 1.0.0 " ,
Ê " jobControlOptions " : [
Ê " async-execute"
Ê] ,
Ê " outputTransmission " : [
Ê " reference "
Ê]
}

Note that the input and output description parts have been hidden from the example and will be
covered in the workflow execution step (step 4).

AliceÕs sister can compose her CWL workflow using her preferred CWL workflow designer tool (e.g.
Rabix Composer embedded by the TEP Client) and import the various applications' CWL files for
building the workflow steps.

Before deploying the workflow generated by the design tool, the run property must be verified (can be
enforced by the TEP Client) to ensure that:

¥ The CWL file path should be restricted to the file name.

¥ The CWL file name must be the process identifier (defined in the WPS Process Description).

25

Ê " steps" : {
Ê " myOwnStep" : {
Ê " run" : " NDVIMultiSensor.cwl" ,
Ê " in " : {
Ê " files " : " myWorkflowInput"
Ê } ,
Ê " out" : [
Ê " myOutput"
Ê]
Ê } ,
Ê }

7.3.3. Workflow Deployment (Step 3)

AliceÕs sister composed the Multi Sensor NDVI Stack Generator processing chain. The chain performs a
Multi Sensor NDVI processing on each of the 3 received EO Image inputs, then stacks the generated
outputs, as illustrated on the diagram below.

Figure 5. multisensorNDVIWorkflow

AliceÕs sister prepares the WPS Process Description (with the help of the TEP Client) for deploying the
processing chain workflow, and uses the client to perform the deployment request. The WPS-T REST
HTTP POST operation path is /processes and the request is shown below.

{
Ê " processDescription " : {
Ê " process" : {
Ê " id " : " MultiSensorNDVIStackGenerator" ,
Ê " title " : " MultiSensorNDVIStackGenerator" ,
Ê " abstract " : " " ,
Ê " keywords" : [] ,
Ê " inputs " : [
Ê {

26

Ê " id " : " image-collection1 " ,
Ê " title " : " Input Image " ,
Ê " formats " : [
Ê {
Ê " mimeType" : " application/zip " ,
Ê " default " : true
Ê }
Ê] ,
Ê " minOccurs" : 1,
Ê " maxOccurs" : " unbounded" ,
Ê " additionalParameters " : [
Ê {
Ê " role " :
" http://www.opengis.net/eoc/applicationContext/inputMetadata " ,
Ê " parameters" : [
Ê {
Ê " name" : " EOImage" ,
Ê " values" : [
Ê " true "
Ê]
Ê }
Ê]
Ê }
Ê]
Ê } ,
Ê {
Ê " id " : " image-collection2 " ,
Ê [. . .]
Ê } ,
Ê {
Ê " id " : " image-collection3 " ,
Ê [. . .]
Ê }
Ê] ,
Ê " outputs " : [
Ê {
Ê " id " : " output " ,
Ê " title " : " Stacked Image" ,
Ê " formats " : [
Ê {
Ê " mimeType" : " image/tiff " ,
Ê " default " : true
Ê }
Ê]
Ê }
Ê]
Ê } ,
Ê " processVersion" : " 1.0.0 " ,
Ê " jobControlOptions " : [
Ê " async-execute"
Ê] ,

27

Ê " outputTransmission " : [
Ê " reference "
Ê]
Ê } ,
Ê " executionUnit " : [
Ê {
Ê " href " : " https://some-host/CWL/MultiSensorStackGenerator.cwl "
Ê }
Ê] ,
Ê " deploymentProfileName" : " http://www.opengis.net/profiles/eoc/workflow "
}

The client receives a similar deployment confirmation message as described earlier.

7.3.4. Workflow Execution (Step 4)

Bob tries to discover the applications and workflows available on the TEP in order to perform an
execution (step 4). The TEP Client can list the available processes using the /processes REST path as
already mentioned earlier.

When a WPS Process Description is requested by the EMS client, the returned document differs from
the one that was submitted by Alice. Indeed, the description of the EOImage input is replaced by fields
required to perform a OpenSearch Catalogue query. The EMS is responsible for retrieving the EO Image
references by performing a Catalogue search and passing the returned product URLs. Therefore, the
Process Description returned by the EMS looks as illustrated below.

The WPS-T REST HTTP GET operation path is /processes/{processId} and the response is displayed
below. In that example, the inputs image-collection1 , image-collection2 , and image-collection3 were
replaced by the fields os_aoi, os_startDate, os_endDate, and 3 other inputs for the collection identifier.

28

{
Ê " process" : {
Ê " id " : " MultiSensorNDVIStackGenerator" ,
Ê " title " : " MultiSensorNDVIStackGenerator" ,
Ê " abstract " : " " ,
Ê " owsContext" : {
Ê " offering " : {
Ê " code" : " http://www.opengis.net/eoc/applicationContext/cwl " ,
Ê " content " : {
Ê " href " : " https://some-host/multiSensorNDVIStacker.cwl "
Ê }
Ê }
Ê } ,
Ê " inputs " : [
Ê {
Ê " id " : " os_collectionId_image-collection1 " ,
Ê [. . .]
Ê } ,
Ê {
Ê " id " : " os_collectionId_image-collection2 " ,
Ê [. . .]
Ê } ,
Ê {
Ê " id " : " os_collectionId_image-collection3 " ,
Ê [. . .]
Ê } ,
Ê {
Ê " id " : " os_startDate " ,
Ê [. . .]
Ê } ,
Ê {
Ê " id " : " os_endDate" ,
Ê [. . .]
Ê } ,
Ê {
Ê " id " : " os_aoi"
Ê [. . .]
Ê }
Ê] ,
Ê[. . .]
Ê }
}

Bob executes the workflow by submitting an Execute request. The WPS-T REST HTTP POST operation
path is /processes/{processId}/jobs .

29

{
Ê " mode" : " async" ,
Ê " response" : " document" ,
Ê " inputs " : [
Ê {
Ê " id " : " os_collectionId_image-collection1 " ,
Ê " data" : " EOP:IPT:Sentinel2"
Ê } ,
Ê {
Ê " id " : " os_collectionId_image-collection2 " ,
Ê " data" : " urn:ogc:def:EOP:VITO:PROBAV_P_V001"
Ê } ,
Ê {
Ê " id " : " os_collectionId_image-collection2 " ,
Ê " data" : " DE2_MS4_L1B"
Ê } ,
Ê {
Ê " id " : " os_aoi" ,
Ê " data" : " 100.4,18.3,104.6,19.3 "
Ê } ,
Ê {
Ê " id " : " os_startDate " ,
Ê " data" : " 2018-01-30T00:00:00.000Z"
Ê } ,
Ê {
Ê " id " : " os_endDate" ,
Ê " data" : " 2018-01-31T23:00:59.000Z"
Ê }
Ê] ,
Ê " outputs " : [
Ê {
Ê " id " : " output " ,
Ê " transmissionMode" : " reference "
Ê }
Ê]
}

The execution is confirmed by an HTTP 201 response code, and includes the status document URL in
the "Location" HTTP header.

The WPS-T REST HTTP GET operation path is /processes/{processId}_/jobs/{jobId}_. The status shall be
polled until the state is succeeded (or failed) as shown below.

{
" status " : " succeeded" ,
" message" : " Status of job 35efcdb8-7447-46bb-8338-2e706d1cfece " ,
" jobId " : " 35efcdb8-7447-46bb-8338-2e706d1cfece"
}

30

For retrieving the Result document, the WPS-T REST HTTP GET operation path is
/processes/{processId}_/jobs/{jobId}/result_. Typically, the result outputs are provided by reference to
avoid retrieving files to the EMS between all the steps.

{
Ê " outputs " : [
Ê {
Ê " mimeType" : " image/tiff " ,
Ê " href " : " http://some-host/WPS/xxxYYY" ,
Ê " id " : " output "
Ê }
Ê]
}

7.3.5. EMS Execution Steps

The approaches for performing a workflow or an application execution are specific to the EMS
implementation. However, the implementation always includes the three steps detailed further.

OpenSearch Catalogue (Step 5)

As mentioned above, the EMS replaces the EO Image inputs with OpenSearch query fields (collection
identifier, area of interest and time of interest). They are used by the EMS for searching the products
URLs on the Gateway. The Gateway is based on the OGC OpenSearch Extension for Earth Observation
specification (OGC 13-026r8) and OpenSearch Geo and Time Extensions (OGC 10-032r8).

In the context of Testbed-14, the OpenSearch Gateway developed by Spacebel is in front of the three
MEP catalogues and is configured with the following collections:

¥ EOP:IPT:Sentinel2

¥ urn:ogc:def:EOP:VITO:PROBAV_P_V001

¥ PROBAV_S1-TOA_1KM_V001

¥ DE2_MS4_L1B

The first step for retrieving EO Image references is to search for the provided collection. The collection
identifier is supplied in the WPS-T REST HTTP GET operation path http://geo.spacebel.be/opensearch/
request?uid={collectionId} .

The operation returns the list of collection entries matching with this collection identifier. For each
entry, it includes a reference to the OpenSearch document that describes the collection search engine
in atom:feed/atom:link[@rel=ÕsearchÕ][@type=Ôapplication/opensearchdescription+xmlÔ].

The EMS then retrieves the OpenSearch Description Document (OSDD) for the requested collection. In
the context of Testbed-14, the first step can be skipped, because the OSDD reference may be retrieved
using the WPS-T REST HTTP GET operation path http://geo.spacebel.be/opensearch/description.xml?
parentIdentifier={collectionId} .

The Collection OSDD document defines in particular the search template for the product query request

31

http://geo.spacebel.be/opensearch/request?uid={collectionId}
http://geo.spacebel.be/opensearch/request?uid={collectionId}
http://geo.spacebel.be/opensearch/description.xml?parentIdentifier={collectionId}
http://geo.spacebel.be/opensearch/description.xml?parentIdentifier={collectionId}

in atom:entry/atom:link[@rel=ÕsearchÕ] with @type=Õapplication/atom+xmlÕ , as illustrated below.

<Url indexOffset =" 1" pageOffset=" 1" rel =" results " template =
" http://geo.spacebel.be/opensearch/request?httpAccept=application%2Fatom%2Bxml &parent
Identifier=EOP:IPT:Sentinel2 &query={searchTerms?}&startDate={time:start?} &end
Date={time:end?} &geometry={geo:geometry?}&platform={eo:platform?} &orbitNumber
={eo:orbitNumber?} &frame={eo:frame?} &sensorMode={eo:sensorMode?}&swathIdentif
ier={eo:swathIdentifier?} &orbitDirection={eo:orbitDirection?} &antennaLookDirectio
n={eo:antennaLookDirection?} &polarisationChannels={eo:polarisationChannels?} &proc
essingLevel={eo:processingLevel?} &maximumRecords={count?}&uid={geo:uid?} &name
={geo:name?}&lat={geo:lat?} &lon={geo:lon?} &radius={geo:radius?} &recordSch
ema={sru:recordSchema?}&bbox={geo:box?}&startRecord={startIndex?} &strict=true
" type=" application/atom+xml " >

The EMS builds the product search request path from the template by setting null values for unused
fields and by setting the following parameter values:

¥ geo:box : AOI

¥ time:start : TOI start date

¥ time:end : TOI end date

The WPS-T REST HTTP GET operation path may look similar to http://geo.spacebel.be/opensearch/
request?parentIdentifier={collectionId}&startDate={toi_start}&endDate={toi_end}&bbox={aoi}&
httpAccept=application/atom%2Bxml

Finally, the returned document is a list of entries that include, as shown below:

¥ The link to the products: in atom:entry/atom:link[@rel= enclosure]

¥ The associated WPS endpoint: in atom:entry/owc:offering/owc:operation[@code= Execute]/@href

<link href =" " http: / / 185.48.233.249/ Sentinel-2 / MSI/ L1C/ 2018/ 01/ 30
/ S2B_MSIL1C_20180130T034959_N0206_R104_T47PPT_20180130T064159.SAFE" rel =" enclosure "
title =" Download" type=" application/x-binary " />
<owc:offering code=" http://www.opengis.net/spec/owc-atom/1.0/req/wps " >
Ê <owc:operation method=" GET" code=" Execute" type=" application/xml " href =" http://wps-
domain/WPS/endpoint" />
</owc:offering>

The execution of the WPS Process pointed to by the workflow step that consumes the EO Image needs
to be performed on the MEP ADES associated with the EO Image. This ensures that the Process will be
executed close to the EO Image data location.

7.3.6. EMS Deployment on ADES (Step 6)

The EMS needs to deploy the Application(s) before starting the execution. The deployment request is
based on the document provided on step 1 by Alice. It also embeds in the Process Description the
information provided by the CWL file inside the additionalParameters element. Note that this

32

http://geo.spacebel.be/opensearch/request?parentIdentifier={collectionId}&startDate={toi_start}&endDate={toi_end}&bbox={aoi}&httpAccept=application/atom%2Bxml
http://geo.spacebel.be/opensearch/request?parentIdentifier={collectionId}&startDate={toi_start}&endDate={toi_end}&bbox={aoi}&httpAccept=application/atom%2Bxml
http://geo.spacebel.be/opensearch/request?parentIdentifier={collectionId}&startDate={toi_start}&endDate={toi_end}&bbox={aoi}&httpAccept=application/atom%2Bxml

duplicates the information in the request, but this agreement was adopted as a compromise between
the different implementation approaches.

The MultiSensorNDVI deployment request sent to the ADES is shown below.

{
Ê " processOffering " : {
Ê " process" : {
Ê " id " : " MultiSensorNDVI" ,
Ê " title " : " Multi Sensor NDVI " ,
Ê " abstract " : " NDVI is calculated after the two bands values Near Infrared and
red. It is calculated by this formula : NDVI = (NIR-Red)/(NIR+Red) " ,
Ê " keywords" : [
Ê " NDVI"
Ê] ,
Ê " owsContext" : {
Ê " offering " : {
Ê " code" : " http://www.opengis.net/eoc/applicationContext/cwl " ,
Ê " content " : {
Ê " href " : " http://some.host/CWL/MultiSensorNDVI.cwl "
Ê }
Ê }
Ê } ,
Ê " inputs " : [
Ê {
Ê " id " : " inputImage" ,
Ê " title " : " Input Image " ,
Ê " formats " : [
Ê {
Ê " mimeType" : " application/zip " ,
Ê " default " : true
Ê }
Ê] ,
Ê " minOccurs" : 1,
Ê " maxOccurs" : 1,
Ê " additionalParameters " : [
Ê {
Ê " role " : " http://www.opengis.net/eoc/applicationContext/cwl " ,
Ê " parameters" : [
Ê {
Ê " name" : " position " ,
Ê " value" : " 1"
Ê } ,
Ê {
Ê " name" : " prefix " ,
Ê " value" : " image"
Ê } ,
Ê {
Ê " name" : " separate" ,
Ê " value" : " false "

33

Ê } ,
Ê {
Ê " name" : " itemSeparator " ,
Ê " value" : " ="
Ê }
Ê]
Ê }
Ê] ,
Ê " owsContext" : {
Ê " offering " : {
Ê " code" : " anyCode" ,
Ê " content " : {
Ê " href " : " anyRef"
Ê }
Ê }
Ê }
Ê } ,
[. . .] } ,
Ê " deploymentProfile " : {
Ê " deploymentProfileName" :
" http://www.opengis.net/profiles/eoc/dockerizedApplication " ,
Ê " executionUnit " : {
Ê " reference " : " docker.registry.host/multisensorNDVI "
Ê }
Ê }
}

The client receives a similar deployment confirmation message as described earlier.

7.3.7. EMS Execution on ADES (Step 7)

For each of the workflow steps (or for the single Process in the case of an application), an execute
request needs to be sent to the appropriate MEP ADES. The WPS-T REST HTTP POST operation path is
/processes/{processId}/jobs .

The request for the ADES "MultiSensorNDVI" process is shown below.

The request in JSON:

34

{
Ê " inputs " : [
Ê {
Ê " id " : " files " ,
Ê " href " : " http://some-host/PROBAV_L1C_20160505_232748_3_V101.HDF5"
Ê } ,
Ê {
Ê " id " : " files " ,
Ê " href " : " https://some-host/PROBAV_L1C_20160505_232949_3_V101.HDF5"
Ê }
Ê] ,
Ê " outputs " : [
Ê {
Ê " id " : " output " ,
Ê " transmissionMode" : " reference "
Ê }
Ê] ,
Ê " mode" : " async" ,
Ê " response" : " document"
}

35

Chapter 8. Execution Management Service
This Chapter describes the implementation experience of the Testbed-14 EOC Participants in charge of
providing EMS implementations, signaling any relevant peculiarities of their solutions or issues found.

8.1. Spacebel
The Spacebel EMS implementation is based on the 52¡ North WPS 2.0 Java implementation and on the
Spacebel WPS transactional extension which provides an XML interface. The interface made use of the
OpenAPI 3 Specification (OAS3). The XML interface is brokered by a proxy based on a Java JAX-RS
server stub generated from the WPS-T REST/JSON OAS3 specification with Swagger CodeGen.

The proxy does not support the GetJobs operation. That operation was proposed in the WPS SWG
REST/JSON draft, but is not compliant with the WPS 2.0 official specification, so it cannot be supported
when using a JSON proxy on the frontend.

The execution of the workflow is performed using the CWL-runner tool which is provided as part of the
standard CWL toolset.

The CWL workflow steps perform runs of Docker containers while the EMS invokes the appropriate
ADES to execute the processes. Instead of tailoring the CWL-runner or developing a custom CWL
engine, the Spacebel approach consists of rewriting the workflow steps to match the desired behavior.
This approach allows the use of any alternative CWL engine (e.g. Airflow) for running the workflow.

For each workflow step, the appropriate target ADES is computed depending on its inputs, and a
command line step is created for starting a WPS commmand-line client which performs the execute
request.

The Spacebel EMS has been deployed on the Google Cloud Platform.

Due to lack of time, the quotation and billing operations have not been implemented.

8.2. Geomatys
The EMS server is a proxy publishing a WPS 2.0 JSON API. It is based on a Spring boot controller using
pojo generated with swagger codegen from the openAPI document.

The aims of the EMS are to:

¥ Validate user credentials and ACL

¥ Perform product search on the OpenSearch catalogue

¥ Transfer WPS requests to the relevant ADES.

¥ Execute CWL Workflow, dispatching each step to different ADES and merging the results

8.2.1. Security

Before performing a deploy/execute operation, the EMS server validates the identity of the user with

36

the supplied credentials from the OAuth 2.0 OpenId server. Upon validation, if the user has the rights to
perform the operation, these credentials are transferred to the ADES, when forwarding the request.

8.2.2. Catalogue communication

The communications with the OpenSearch Catalogue endpoint are made in XML. A data-binding has
been generated with JAXB to manipulate Java objects during the search.

8.2.3. ADES forwarding

Geomatys' EMS server uses the collection input parameter to determine to which ADES the request
must be forwarded. If there is no EOImage in the input, the request is sent to the PFC ADES.

If multiple collections are involved, multiple ADES can be contacted to perform an Execute request.

The server keeps in memory a mapping between an EMS generated JobId and one or more ADES
jobIDs. The same mechanism is applied for quotations and bills.

When receiving a request, if multiple ADES are involved, all ADES responses are merged in one
(StatusInfo, Results, Quotations).

8.2.4. Workflow Execution

When executing a workflow, the EMS downloads the CWL file, parses it and then executes each step
sequentially. It transforms the CWL input into an Execute request and sends it to the selected ADES.
When the ADES has completed the execution of the step, the results are stored in order to be used in
another step.

8.2.5. EMS Deployment

The EMS Docker image is hosted on the Geomatys public registry. The EMS server is deployed on the
Geomatys cloud infrastructure, using Kubernetes.

8.3. CRIM
Test EMS and ADES servers are based on components of the Open Source software framework
Birdhouse [8]. The Twitcher [https://github.com/Ouranosinc/twitcher] component acts as a Policy
Enforcement Point (PEP) and a WPS 2.0 JSON proxy to WPS 1.0 endpoints. It has been enhanced to
comply to the EMS API which involves adding the dynamic deployment of processes and CWL
workflow capabilities. The Magpie [https://github.com/Ouranosinc/Magpie] component is used as an adapter
to manage ACLs of deployed processes and process permissions (WPS requests) for a given userÕs
credentials.

Although fulfilling different roles, EMS and ADES components use the same underlying CWL engines
and require security access verification. Both of them use common operations that are available, such
as:

¥ dynamic deployment of WPS processes

¥ parsing inputs from WPS requests to relay them to CWL operations

37

https://github.com/Ouranosinc/twitcher
https://github.com/Ouranosinc/Magpie

¥ WPS 1.0 (XML) & WPS 2.0 (JSON) requests and responses

¥ authorization validation of access token

CRIMÕs implementation of the EMS differs from the ADES only in the runtime context used by the CWL
tool engine. While the ADES uses the default runtime environment which pulls the Docker image and
executes it using the CWL parameters, the EMS uses a custom runtime implementation. That
implementation instead chooses the right ADES to dispatch the processing based on the inputÕs data
source, makes sure that the process is deployed on the corresponding ADES, then executes and
monitors it until it can finally retrieve the outputs on successful completion. This simple approach
allows the dispatching of a single process only by invoking the CWL engine as well as executing a full
workflow in which case every step is executed by dispatching the processing to a remote ADES and
chaining the outputs to the next step.

Figure 6. CRIM EMS Components Diagram

The principal requests of the EMS involve workflow operations which are DeployProcessWorkflow and
ExecuteWorkflow . The workflow itself is presented as CWL Workflow with Workflow parameters .
Additional details on the AP described in this section can be found in [6].

8.3.1. Deployment on Cloud

The EMS and its accompanying applications were deployed on CRIMÕs cloud infrastructure. Tests were
also conducted on the PFC Boreal Cloud. More information on Cloud computing resources described in
this subsection can be found in [4].

CRIM Infrastructure

The servers are deployed on three separate VMs, a development ADES and EMS, and a production EMS
(m1.2xlarge, 80GB /dev/vda, 500 GB /dev/vdc) running ubuntu-18.04 and created on a public OpenStack
tenant hosted at CRIM. A monitoring agent, Zabbix , is installed on the VM to ensure sufficient
operational QoS. The EMS and security components are themselves Docker images pulled from a
Docker registry and run using Docker compose. Cloud infrastructure setup and automation procedures
can be found in [4].

38

PFC Boreal Cloud

Access to the PFC Boreal Cloud has been made to ensure that an AP could be deployed and run by any
ADES hosted on the cloud. Deployment of the EMS has been explored, as well as the security solution of
NRCan, DACS. More information on DACS can be found in [4].

8.3.2. WSO2 Security

The Magpie component allows the securing of any REST API with user-specific permissions on each
endpoint. It is used to restrict the process deployment endpoint to user members of the developer
group only. Each deployed process endpoint is authorized for listing and execution only to its owner
unless the visibility is updated to public. Provided that the WSO2 token is valid (proper credentials and
not expired), the following call will convert the generic OAuth2 access_token into a Magpie auth_tkt
that allows calls to any API route with corresponding user credentials, permissions, and authorizations.

{
GET '{host}/magpie/providers/wso2/signin'
Headers: {'Authorization': 'Bearer <access_token>', 'Homepage-Route': '<magpie-relative-
route>'
}

While a user can log directly in Magpie using its WSO2 credentials the previous step is performed
transparently when accessing one of the EMS endpoints with a valid WSO2 token.

The WSO2 provider must be properly setup in the corresponding instance for the previous call to work.
Since WSO2 does not allow multiple callback URLs for security reasons (return tokens only to known
clients), the WSO2 client ID/secret must be defined beforehand. A new authorized Magpie service
provider must be defined for every host server, with corresponding client ID/secret pairs deployed on
each of their respective instance. The following environment variables are required.

WSO2_CLIENT_ID = #####
WSO2_CLIENT_SECRET = #####
WSO2_HOSTNAME = https://eodata-iam.user.eocloud.eu:8080

39

Chapter 9. Application Deployment and
Execution Service
This Chapter describes the implementation experience of the Testbed-14 EOC Participants in charge of
providing ADES implementations, signaling any relevant peculiarities of their solutions or issues
found.

9.1. Spacebel
The ADES implementation is based on the 52¡ North WPS 2.0 Java implementation and on the Spacebel
WPS transactional extension which provides a XML interface. The XML interface is brokered by a
proxy based on Java JAX-RS server stub generated from the WPS-T REST/JSON OAS3 specification with
Swagger CodeGen.

The proxy does not support the GetJobs operation. That operation was proposed in the WPS SWG
REST/JSON draft, but is not compliant with the WPS 2.0 official specification, so it cannot be supported
when using a JSON proxy on frontend.

The execution of the Docker container is performed using CWL-runner which interprets the CWL file
provided during the application deployment. The input files are downloaded (and renamed to avoid
filename collisions) on the ADES file system.

Spacebel ADES has been deployed on IPT Poland cloud and on PFC boreal cloud.

9.2. Geomatys
The Geomatys ADES Server is based on the Examind-server WPS 2.0. It is a Java-based server that uses
the Geotoolkit library [http://www.geotoolkit.org/] for data-binding and processing. It handles WPS 1.0/2.0
in XML and JSON. Geomatys added the Transactional and Quotation part during this Testbed.

The ADES features are to:

¥ Validate user credentials and ACL

¥ Deploy/Execute CWL processes

¥ Download PROBAV product files (authenticated)

¥ Compute quotations and bills

9.2.1. Security

Before performing a deploy/execute operation, the ADES server validates the identity of the user with
the supplied credentials from the OAuth 2.0 OpenId server. The user authentication/authorization is
performed within the Spring-security stack of Examind-server.

9.2.2. CWL Process

The deployed process definitions (inputs / outputs / CWL location) are stored in the Examind

40

http://www.geotoolkit.org/
https://www.geomatys.com/en/products/examind-server/

