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Chapter 1. Summary
This Open Geospatial Consortium (OGC) Engineering Report (ER) captures the requirements,
solutions, and implementation experiences of the Vector Tiling work package in OGC Testbed-13
[Available at: http://www.opengeospatial.org/projects/initiatives/testbed13]. This ER describes the
evaluation of existing vector tiling solutions. The evaluation was used to define a conceptual model
that integrates elements from different approaches to vector tiling. This is followed by an overview
of how the developed implementation integrates vector tiles containing World Geodetic System
1984 (WGS84), European Terrestrial Reference System 1989 (ETRS89) and British National Grid
projection data, standards based tile schemas and moving features. Best practice guidelines for the
use of Symbology Encoding (SE) and Styled Layer Descriptor (SLD) are also provided ensuring the
service is optimized for analysis and low-bandwidth networks. The report concludes with an
investigation on how existing OGC services may be extended with the necessary capabilities
enabling the full range of geometry types and tiling strategies to support vector tiling.

1.1. Requirements
The work presented in this ER addresses the following requirements:

1. Feasibility study: Testbed-13 participants were tasked with conducting a feasibility study
evaluating a standardized vector tiling model including a dedicated spatial index study.

2. Projections and moving features: Testbed-13 participants were tasked with developing
recommendations to aid standardization of the widely adopted Mapbox Vector Tile
Specification with commonly used projections (WGS84 - EPSG:4326, ETRS89 - EPSG:4258 and
British National Grid - EPSG:27700)  and moving feature data.

3. Styling and Symbology: Testbed 13 participants were tasked with exploring vector map tiles
styling and symbology using a non-proprietary format that is open and not implementation
specific. Where possible this should utilize existing OGC standard(s) or best practice approaches
such as SE and SLD.

4. Tile Attribution: Testbed 13 participants were tasked with investigating the ability to associate
attribute(s) with vector features as appropriate for publishing as a Vector Map Tiling service.

5. Geometry and Tiling: Testbed 13 participants were tasked with incorporating the full range of
Geometry Types and Tiling Strategies to support a vector map tiling service.

6. Low bandwidth: Testbed 13 participants were tasked with exploring a server based
implementation that is optimized for low bandwidth environments, which requires
compression and generalization.

1.2. Key Findings and Prior-After Comparison
The presented experimentation extends the work completed in Testbed 12 with the aim of getting
closer to standardization for a future OGC vector tiling model.

1.2.1. Previous Testbed activities

The Testbed 12 vector tiles engineering report characterized vector tiling as a packet of geographic
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data, packaged into a pre-defined roughly-square shaped tile for transfer over the web [11]. A high-
level overview of the targeted solutions is given, with render based and feature based tiling
identified as possible approaches. Whilst a number of problems as well as solutions are applicable
to both raster and vector tiling and it is therefore useful to discuss raster tiling when examining
vector tiling, a number of challenges specifically relating to vector tiling are highlighted including
data coherence; issues around defining multiple levels of detail; tile sectioning; and a need for
unique feature identification. The document discusses, in much greater detail, specific aspects of
vector tiling including:

• data coherence;

• geometry simplification;

• tiling schemes;

• tiling strategies and styling;

• performance and memory usage.

The main recommendation was to further investigate a path of standardization for a possible OGC
vector tiling model.

Building upon the findings of the Testbed 12 Vector Tiles Engineering Report, Testbed 12 Vector
Tiles Implementation Engineering Report explores the implementation of vector tiles using tile
encoding in GeoJSON format. Two solutions were identified including: the introduction of a vector
tile pyramid concept, similar to the existing raster tile pyramids; and an extension of the existing
feature capabilities with the ability to represent multiple resolutions of a feature’s geometry. The
targeted solution which was followed considered a feature based tiling solution for implementing
vector tiles in an OGC GeoPackage, based on the existing standards foundation for raster tiles. A
discussion of implementing aspects of storing, accessing and describing vector tile pyramids in OGC
GeoPackage was also given. The primary recommendation made was to favor the feature-based
tiling approach, providing users with feature access capabilities - even in disconnected or limited
network connectivity environments.

1.2.2. Key findings

The work and experiments carried out in the OGC Testbed-13 Vector Tiling thread demonstrated
that it is possible to extend existing OGC standards such as Web Feature Service (WFS) and Web
Map Tiling Service (WMTS) to support the delivery of feature data including geometry and attribute
values in the form of vector tiles. A new approach for serving vector tiles was prototyped: the
Unified Map Service (UMS). UMS aims to unify Web Map Service (WMS), WMTS, WFS and Web
Coverage Service (WCS). An advantage of tiling data is that it offers efficient consumption of data as
tiles are pre-rendered and cached on the server side. A disadvantage of Tiling Data is that there are
numerous approaches implemented in the market place but no open standard exists for such data.

1.3. What does this ER mean for the Working Group
and OGC in general
This ER is relevant to the ongoing work of the OGC Architecture DWG because the activity defines a
best practice approach to vector tiling which could be incorporated into various existing OGC
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Standards. The work presented in the ER provides recommendations contributing to the creation of
a future OGC Vector Tiling standard including the impact on performance and interoperability.

1.4. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Table 1. Contacts

Name Organization

Stefano Cavazzi Envitia

Jens Ingensand HEIG-VD

Jérôme Jacovella-St-Louis Ecere

Wenwen Li Arizona State University

Eugene Genong Yu George Mason University

1.5. Future Work
This ER offers suggestions for the development of a future OGC vector tiling model in terms of: an
exchange format; attribute handling; a tiling scheme; styling; coordinate systems; data storage;
generalization and filtering; support for specific geometry types and moving features (as identified
in Testbed 12 Vector Tiling ER). The thread participants recommend that any follow-on work and
discussions on vector tiling should preferably happen in an OGC dedicated working group such as a
Standards Working Groups (SWG) that could consider the recommended extensions to WFS and
WMTS and the newly proposed UMS.

1.6. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.
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Chapter 2. References
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Chapter 3. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply. In addition, the following terms and definitions apply.

3.1. Coordinate system
set of mathematical rules for specifying how coordinates are to be assigned to points (ISO
19111:2007)

3.2. Feature
abstraction of real world phenomena (ISO 19101:2002)

3.3. Tile
a rectangular representation of geographic data, often part of a set of such elements, covering a
spatially contiguous extent which can be uniquely defined by a pair of indices for the column and
row along with an identifier for the tile matrix (adapted from OGC 07-057r7)
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Chapter 4. Abbreviated terms
NOTE: The abbreviated terms clause gives a list of the abbreviated terms and the symbols necessary for
understanding this document. All symbols should be listed in alphabetical order.	Some more frequently
used abbreviated terms are provided below as examples.

• 3D Three Dimensional

• API Application Program Interface

• DWG Domain Working Group

• ECON eC Object Notation

• GIS Geographic Information System

• GML Geography Markup Language

• GPU Graphics Processing Unit

• JSON JavaScript Object Notation

• MVT MapBox Vector Tiles

• NGA National Geospatial-Intelligence Agency

• NSG National System for Geospatial-Intelligence

• PBF Protocol Buffer Format

• SWG Standard Working Group

• UMS Unified Map Service

• WCS Web Coverage Service

• WFS Web Feature Service

• WGS-84 World Geodetic System 1984

• WMS Web Map Service

• WMTS Web Map Tile Service

• XML Extensible Markup Language
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Chapter 5. Overview

5.1. Literature Review
Vector & Raster Data

Vector data is a type of geospatial data, with each vector feature having a geometry which defines
its geometric shape as well as its geographical location [14]. Vector features have geometries made
up of points, lines or polygons and often have annotations. The position and shape of a vector
feature is captured by a series of xyz coordinates, which a geographical information system (GIS)
reads to plot the feature geographically. Another type of geospatial data is raster data, which
consists of a matrix of cells or pixels organized as a grid, with each cell containing a value that
represents information. Raster datasets come in the form of digital images e.g. aerial photographs,
satellite imagery, digital pictures or scanned maps. Table 2 gives a broad comparison between the
two types of geospatial data. The vast majority of maps available on-line currently are raster based
and this is a result of the methods of raster data transmission being well established and easily
implemented [1]. Whereas, delivering vector based maps on-line in the form of vector tiles suffers
from the lack of an established standard.

Table 2. Comparison between vector and raster data

Vector Raster

Relatively low data volume Relatively high data volume

Faster display Slower display

Can also store attributes Has no attribute information

Less pleasing to the eye More pleasing to the eye

Doesn’t dictate how features should look in a GIS Inherently stores how features should look in a
GIS

Source: Ordnance Survey

The advantages of vector data include:

• Query/Filtering;

• Feature attributes;

• Flexible rendering;

• Available generalization algorithms;

• Compression techniques.

The disadvantages of vector data include:

• Complex geometries;

• Limited availability of generalization and compression techniques.

Vector Tiling
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Vector tiling is a method for delivering large vector data in small pieces or tiles [15]. Vector tile
layers deliver vector map data, which includes one or more layers, that are rendered by the client
but based on a style delivered with the layer. In contrast to raster tiles, which deliver basemaps to a
client as images that have been pre-rendered and stored on the server, vector tiles store a vector
representation of the data i.e. geographic features being symbolized by points, lines and polygons.
As a result, vector tiles can adapt to the display device resolution and be restyled for multiple uses.
There are other use cases including: data storage where the vector data is stored in a tiled data
store (e.g. CDB and GenaMap); generating tiled structure from an untiled and perhaps unstructured
set of vector feature data; another use case is visualization with data querying or analytics as
additional use cases. Some of the major advantages and disadvantages of vector tiling are given in
Table 3.

Table 3. Advantages & Disadvantages of Vector Tiles

Advantages of Vector Tiles Disadvantages of Vector Tiles

Rendering is completed by the client not by the
server which allows different map styles
without having to reconfigure the server.
Customization of layers e.g. hide their visibility,
change symbols and fonts, change languages for
labels etc. without having to regenerate tiles.

Geographic data may need to be pre-processed
to allow the client to do required drawings
(similar to preprocessing data for image maps).

The size of a vector tile is usually smaller than a
raster image tile of similar resolution or ground
sample size, resulting in faster data transfer and
lower bandwidth usage (Faster maps and better
performance). This also reduces the cost to store
and serve the tiles.

Graphic conflicts and losses may occur along the
borders of tiles when symbolizing geographical
features on tiles and connecting tiles according
to their coordinates.

Due to vector data being available on the client,
high-resolution maps can be drawn without
increases in bandwidth. Therefore, vector tiles
can be displayed at any scale with clear
symbology and labels.

The client has access to the actual feature
information (attributes and geometry) allowing
for sophisticated rendering.

Can be projected into various coordinate
systems, without distortion of labels and other
symbols.

Source: GeoServer, ArcGIS & Li et al. [8]

Many map publishing companies including for example MapBox and Mapzen provide vector tile
services that are available in three major delivery formats and which are given in Table 4. A study
by Shang [15] explored the transmission efficiency of three vector tile encoding formats; GeoJSON,
TopoJSON and Google Protocol Buffers, developing a prototype of the Canadian road network
vector map. The results of the study showed that a vector tiling solution improves application
performance as well as being scalable compared to naïve architecture [15]. Furthermore, as is often
the case in the IT world, vector tiles have the best performance on machines with newer hardware
[2].
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Table 4. Vector Tile Formats

Format Description

MapBox Vector (MVT) This is an efficient binary format that is widely
supported in many vector data applications.

GeoJSON A human readable JSON format. Many
geospatial applications support tiles in this
format.

TopoJSON A complex but also human readable JSON
format which is good for polygon coverages. Not
widely supported with limited vector tiling
applications using it.

Source: GeoServer website [5]

In a study by Li et al. [8] experimental results indicated that the vector data model they devised can
solve visual conflicts and discontinuities for all types of geographical features. It was concluded
that using “Protocolbuffer Binary Format” (PBF) as the encoding format for vector tiles is
considered better than GeoJSON because PBF is a high-compact format, with smaller size file
encoding compared to those encoded in GeoJSON. Zhou et al. [17] proposed a virtual globe based
vector data model called the Quaternary Quadrangle Vector Tile Model in order to better manage,
visualize and analyze significant amounts of global multi-scale vector data. The model integrates a
discrete global grid system as well as terrain, global images and vector data.

Several algorithms can be used for the generalization and simplification of vector data as discussed
by Ingensand et al. [6] in order to establish vector tile services for future versions of the Swiss
Federal Geoportal. The approach to tiled vector data refers to existing standards e.g. the WMTS tile
indexing and JSON based file formats. The principle of vector tiling is similar to raster data tiling
where large raster datasets are tiled into smaller pieces and stored in hierarchical structures, either
in databases or in file systems. What is more, the concept of tiled vector data services is to combine
the advantages of vector data with the advantages of tiled raster data services [6]. As identified by
Ingensand et al. [7], no open and widely adopted standard exists for the implementation of web
services involving vector tiles. A number of key issues regarding formats and standards, tiling
schemes, basic geometry types, the grouping of layers into tiles, update frequency and issues
regarding attributes are covered in detail. Again, the use of vector tiles is discussed in relation to
the Swiss Federal Geoportal. Ingensand et al [6] concluded that generalization and simplification of
vector features remain one of the biggest issues regarding the use of vector tiles, as well as the fact
that no open standard currently exists.

In summary, vector tiling promises to produce higher quality maps with high data transfer rates
but also lower bandwidth usage and provide significant performance improvements for data
visualization, access and analytics. The ability to render at multiple scales with clear symbology
and labels is a significant advantage. Previous research has shown that vector data models have an
improved performance and satisfy requirements with regards to global vector data organization,
visualization and querying. What remains to be seen is the development of a coherent conceptual
approach which will lead the way to an OGC standard for vector tiling. Until this occurs it is
unlikely that a shift from raster to vector web mapping will occur. Other techniques such as spatial
indexing provide a means to improve vector tiling and aid such a shift to vector web mapping.
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5.2. Vector Tiling - WMTS/WFS Advantages and
Disadvantages
Two existing OGC standards, WMTS and WFS, appear to have key characteristics suitable for the
development of a vector tiling solution.

WMTS

WMTS defines a set of interfaces for making web-based requests of map tiles of spatially referenced
data using tile images with predefined content, extent, and resolution. The standard includes the
WMTS Specification (“WMTS Spec”) 07-057r7 OpenGIS Web Map Tile Service Implementation
Standard along with collateral documentation such as profiles and XML documents. WMTS
complements the OGC Web Map Service interface standard (WMS) for the web based distribution of
cartographic maps. WMS focuses on flexibility in the client request enabling clients to obtain
exactly the final image they want. While WMS focuses on rendering custom maps and is well-suited
for dynamic data or custom styled maps, WMTS trades the flexibility of custom map rendering for
the scalability made possible by serving static data (base maps) where the bounding box and scales
have been constrained to discrete tiles. The fixed set of tiles allows for the implementation of a
WMTS service using a web server that simply returns existing files. The fixed set of tiles also
enables the use of standard network mechanisms for scalability such as distributed cache systems.
The key characteristics that make WMTS a suitable candidate for vector tiling are related to
visualization performance supporting services where static rendered maps are required by highly
scalable systems that issue many simultaneous requests while the disadvantages are the lack of
programmatic access to the geographic feature data and query functionalities.

WFS

The OGC WFS standard defines a set of interfaces for accessing geographic information at the
feature and feature property level over the Internet. A feature is an abstraction of real world
phenomena that is it is a representation of anything that can be found in the world. The attributes
or characteristics of a geographic feature are referred to as feature properties. WFS offer the means
to retrieve or query geographic features in a manner independent of the underlying data stores
they publish. When a WFS is authorized to do so, the service can also update or delete geographic
features. An instance of a WFS is also able to store queries in order to enable client applications to
retrieve or execute the queries at a later point in time. The key characteristics that make WFS a
suitable candidate for vector tiling are the ability to access features and attributes supporting
flexible queries and powerful filtering mechanisms while the disadvantages are the lack of a scale
parameter such as resolution or level of detail.

Table 5 presents current specification limitations of WFS and WMTS with suggested specification
extensions which were experimented during Testbed 13.

Table 5. WFS & WMTS Comparison

Web Feature Service Web Map Tile Service

Specification http://www.opengeospatial.org/
standards/wfs

http://www.opengeospatial.org/
standards/wmts

Current Specification Limitations
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Projections All supported as output. All supported as output.

Moving Features Could be implemented using
time attributes for light
geometry, e.g. points data.

No support.

Styling & Symbology Styling and symbology possible
through external stylesheets

Tiles are already rendered with
a predefined style.

Tile Attribution The vector data is attributed,
but tile aspect does not apply.

Theoretically possible on a pixel
basis (getFeatureInfo), but very
limited and not widely adopted.

Geometry & Tiling The support of geometries
depends on the format. It is not
possible to request data suitable
for a given scale. The BBOX
parameter can be used to select
geometry within a certain area,
but services and clients
implementations may not
expect the geometry to be
clipped against that box.

Raster-based; no "official"
support for vector data. Tiles
are supported and defined by
well known and custom WMTS
tiling schemes.

Bandwidth Efficiency Bandwidth used depends on the
format (e.g. GML vs GeoJSON)

Bandwidth used depends on the
format (e.g. PNG vs JPEG).
Precalculating the tiles helps
optimizing server-side
resources.

Visualization / Analysis
Usability

Both visualization and analysis
are possible, including server-
side queries, filtering and
transactions. Advanced
visualization is possible on the
client.

Focused on the visualization of
data, with pre-defined styling.
Access to attributes on a pixel
basis is theoretically possible
(getFeatureInfo), but very
limited and not widely adopted.

Proposed Specification Extension

Projections All projections already
supported. The use of
EPSG:4326/WGS-84 for the tiling
scheme and geometry is
recommended, as clients can re-
project the data. A global tiling
scheme adapted to the poles
proposed in annex A avoids
most issues typically associated
with WGS-84.

All projections already
supported. The use of
EPSG:4326/WGS-84 for the tiling
scheme and geometry is
recommended, as clients can re-
project the data. A global tiling
scheme adapted to the poles
proposed in annex A avoids
most issues typically associated
with WGS-84.
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Moving Features Could be implemented using
time attributes for light
geometry, e.g. points data. For
large time series or heavy
geometry, a time dimension
component to identify a tile is
proposed in order to build time
series.

Could be implemented using
time attributes for light
geometry, e.g. points data. A
time dimension component to
identify a tile is proposed in
order to build time series. (This
could apply equally well to
images).

Styling & Symbology Styling is possible client-side,
and a method to query default
styling for layers is proposed.

Styling and symbology already
created (raster data). It could be
possible to have tiles rendered
dynamically on the server from
specified styles, similar to WMS
(an approach planned for the
Unified Map Service). For vector
data, styling is possible client-
side, and a method to query
default styling for layers is
proposed.

Tile Attribution Formats supporting attribution
(e.g. GML) can include the
attribution together with the
geometry. FEATUREID and
PROPERTYNAME can also be
used to separately and
selectively query attributes and
geometry.

Formats supporting attribution
(e.g. GML) can include the
attribution together with the
geometry. FEATUREID and
PROPERTYNAME are proposed
for GetTile to separately and
selectively query attributes and
geometry.

Geometry & Tiling Tiles can be requested using the
zoomLevel and BBOX
parameters, or alternatively
tileRow and tileCol.

Support for returning vector
data tiles needs to be
implemented. An extension to
allow varying tiling matrix
width is proposed to specify a
global tiling scheme adapted to
the poles.

Bandwidth Efficiency An efficient binary
representation of vector data is
proposed in annex B.

Any appropriate efficient vector
data format can be selected for
WMTS, just like WFS, such as
the one described in annex B.

Visualization / Analysis
Usability

Both visualization and analysis
are still possible, and
performance can be greatly
improved by the use of tiling.

Vector tiles allow client-side
analysis and more advanced
client-side visualization. More
complex server-side operations
such as transactions, queries
and filtering are not well suited
for WMTS.
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Generalization /
Simplification

A zoomLevel extension is
proposed (referencing well
known WMTS tiling schemes to
match a level to the scale). A
generalization method must be
used. Ideally, this should have
been done in pre-processing
pipeline when loading data tiles
into the service. In generalizing
data, the processing should
avoid introducing topology
errors such as self-intersections
and overlapping features.

Tiling schemes already define
zoom levels. A generalization
method must be used. Ideally,
this should have been done in
pre-processing pipeline when
loading data tiles into the
service. In generalizing data,
the processing should avoid
introducing topology errors
such as self-intersections and
overlapping features.

5.3. Scenario
The vector tiling architecture (Figure 1) includes three main tiers involving vector tiles generation,
vector tiling service creation and vector tiles client consumption. The components implemented
are:

• Vector tiles data generation (Chapter 6 - Vector Tiles Implementation) involves the creation of
vector tiles with different geometries, coordinate reference systems and formats.

• Vector tiling service creation with GNOSIS (Chapter 7 - Vector Map Tiling Service) involves the
creation of a vector tiles service using an extended WFS. It also provides a WMTS and a
proposed new approach Unified Map Service (UMS) unifying WMS, WMTS, WFS and WCS
demonstrators. A client for the visualization for these three services is also implemented.

• Vector tiling service creation with GeoServer (Chapter 8 - WFS for Vector Tiling) involves the
creation of vector tiles services using extended WFS and WMTS. A client for the visualization
for these two services is also implemented.

• Vector tiles client (Chapter 9 - Vector Tiles Client Implementation) involves the implementation
of a QGIS plug-in capable of making use of the WFS GNOSIS service and the GeoServer WFS and
WMTS vector tiling services.
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Figure 1. Vector Tiling Architecture

All the components involved in vector tiling are presented in Table 6.

Table 6. Vector Tiling Components

Component Deliverable

QGIS plug-in OS102

WFS Gnosis DS101

WMTS Gnosis DS101

UMS Gnosis DS101

WFS GeoServer NG116

WMTS GeoServer NG116

Vector Tiles data OS101

A sequence diagram showing how components operate with one another and in what order is
presented in Figure 2.
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Figure 2. Sequence Diagram

Step 1A: The client request via a GetFeature (WFS) or Get (WMTS) a selection of tiles for a specified
extent and scale including features geometry and attribute values.

Step 2A: An FTP request is made to access the vector tiles data source.

Step 1B: The client request via a GetFeature (WFS) a selection of tiles for a specified extent and scale
including features geometry and attribute values.

Step 2B: An FTP request is made to access the vector tiles data source.

The following table (Table 7) lists the Technology Integration Experiments (TIEs) that took place to
satisfy the vector tiling scenario.

Table 7. TIE Experiment

TIE Tested

QGIS plug-in - WFS Gnosis 29/09/2017

QGIS plug-in - WFS GeoServer 29/09/2017

QGIS plug-in - WMTS GeoServer 29/09/2017

WFS Gnosis - Vector Tiles data 27/10/2017

WFS GeoServer - Vector Tiles data 27/10/2017

WMTS GeoServer - Vector Tiles data 27/10/2017
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Chapter 6. Vector Tiles Implementation

6.1. Introduction
The purpose of this chapter is to advance the discussion for the definition and development an OGC
vector tiling model. Firstly, the chapter offers an analysis of several different solutions that
currently provide vector tiling support. Thereafter, parameters that are important in the context of
vector tiling are described and used in the assessment of the identified solutions. Advantages and
disadvantages regarding these parameters are then presented. Finally, a summary of the results of
the analysis is presented in order to provide recommendations for a future standardization
process.

6.2. Analysis of existing products
A number of vector tiling solutions already exist in the marketplace. The solutions that we
considered in this study are:

• Mapbox Vector Tiles

• Cesium 3D Tiles

• Esri I3S

• Ecere Gnosis

• GeoServer Vector Tiles Extension

• GeoPackage (especially for data storage)

The identified existing solutions are assessed against the following parameters:

• Support for different projection systems

• Support for styling

• The tiling scheme and how tiles are addressed

• Support for different types of geometries (basic types such as points, lines and polygons, and
more advanced types such as multi-part geometries and curve-based shapes)

• Support for 3D data

• Handling of generalization

• The role of different response formats such as GeoJSON, TopoJSON, etc

• How attributes are handled

• How the solution may or may not align with the OGC standards baseline

• Sustainability (e.g. estimation of users)

• The ability of the client (if a client exists) to reassemble features

• Support for moving features

• The possibility of combining several layers in one tile
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• Which operations are possible with vector features (e.g. write support, etc)

6.3. Vector tiling parameters

6.3.1. Exchange format

Compared to common raster data formats such as jpeg, gif, png or tiff which are commonly used in
tiled raster web services applications, many more different vector formats exist. Some vector
formats are open standards (e.g. OGC’s GML), some are proprietary (e.g. Esri’s File Geodatabase)
and some formats are already used within a web-mapping context (e.g. the GML or the GeoJSON
format). The choice of format is therefore more difficult since data needs to be compact due to
bandwidth issues and easy to create and to consume.

The following formats have been identified as being interesting in the context of vector tiling:

1. GML: GML is an XML-based OGC standard and frequently used with WFS services. The
advantages of GML are the support of basically all types of geometries (e.g. curve-based shapes,
multi-part geometries, etc) and the fact that GML is an open standard and widely implemented.
The disadvantage of GML is the weight of the data due to the fact that GML is based on XML.

2. GeoJSON: GeoJSON is a JSON-based format, but not an OGC standard. The advantage of
GeoJSON is that it is widely used in the context of web applications since this kind of data is
easier to parse and to integrate within a JavaScript application.

3. TopoJSON: TopoJSON is also JSON-based. The advantage of TopoJSON is also that it is easy to
parse with JavaScript applications and that the data is even more compact than GeoJSON. The
disadvantage is that there is no widespread support for this format.

4. The Google’s Protocol Buffer Format (PBF) is a binary format that has been used for the
MapBox Vector Tiles (MVT) format. The advantage of PBF and MVT is that the data is very
compact. The disadvantage is that the binary data needs to be converted.

5. Cesium Vector Tiles have adopted the glTF format (GL Transmission format). This format is
also a binary format and optimized for 3D data.

6. Indexed 3D Scene Layer (I3S) Specification An an open OGC community standard that
specifies a tiling scheme for 3D content for both streaming and storage.

6.3.2. Tiling scheme

Creating vector tiles implies cutting a vector layer into smaller pieces. One possibility is to set a
fixed spatial extent (e.g. all generated tiles for one level of detail include features within a square of
500*500 meters). Depending on the vector layer to be tiled and the extent of a tile this might result
in large quantities of empty tiles. This method has been used by Antoniou et al. for instance. The
other possibility is to create tiles depending on their weight (e.g. in terms of vertices per tile: a tile
should for instance contain between 3 and 100 vertices) or depending on whether spatial features
will be cut into several pieces. Thereby varying spatial extents are used for each tile. One drawback
of this method is that it becomes more difficult to recalculate tiles if the original data layer changes
frequently. Another drawback is the implementation on the client side (e.g. using a Javascript
API) — the irregular organization of tiles needs to be communicated to the client and thereby the
client needs to be able to request the right tiles for each level of detail at a given spatial extent. An
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implementation of this method has been created by Dufilie and Grinstein [3].

All existing solutions except for Cesium Vector Tiles and I3S have adopted a regular tiling scheme.
Some solutions re-utilize the WMTS tiling scheme definition (GeoServer, Ecere GNOSIS). Ecere
GNOSIS additionally defines a global tiling grid with less horizontal tiles closer to the poles. Cesium
Vector Tiles uses an algorithm in order to determine which features shall be included in one tile. A
JSON file that is sent to the client contains the spatial extents and positions of each tile. One
advantage for this method is the fact that buildings (that are displayed through the Cesium JS
library) are not cut into pieces that need to be assembled on the client. The OGC CDB specification
also suggest a tiling scheme based on the WGS 84 coordinate system - the earth is cut into slices and
tiles based on the latitude and longitude.

6.3.3. Attribute handling

Vector data generally consists of both vector features and associated attributes. If a feature (except
point features) is split in two parts (see Figure 3), the question arises of where to store the
attributes. The following three options can be considered:

• A feature’s attributes are simply copied in each of the parts. The advantage is that all attributes
are directly available for all parts; even if all the parts have not been downloaded on a client all
attributes are available. The drawback is the fact that information is duplicated.

• Only one part contains the attributes. The advantage is that no information is duplicated. On the
other hand, if a feature (e.g. a motorway ranging over thousands of kilometers) is split into
several parts it becomes difficult to find the exact part containing the attributes. This problem
however could be addressed if the exact location of the tile containing the attributes is defined
in all tiles. Nordan [10] for instance suggests a manner of storing this information in vector tiles
so that a client can reassemble information.

• Attributes are stored in separate files or made available through a separate web service. The
advantage is that the attributes are not stored in the vector tiles anymore (and thereby vector
tiles are lighter). The disadvantage is the fact that another web service (or another data file)
needs to be created — this can result in more queries and are more complex web services and
system architecture.

Figure 3. Attribute Handling

All analyzed solutions support attributes. However each solution has chosen different
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implementation approaches. For instance GeoServer duplicates the attributes for each tile. Both
Esri’s and Ecere’s solutions separate geometries and attributes. In both cases attributes are made
available through separate services. MapBox uses a tag system in order to minimize redundancy.
Cesium vector tiles and I3S include all attributes — the problem of redundancy is less important
since the tiling scheme is irregular (Cesium vector tiles and I3S try to avoid cutting features into
pieces).

6.3.4. Styling

This section provides some information on how styling is applied on vector tiles, where the styling
information is stored and in which format.

MapBox

According to documentation:

As the name suggests, vector tiles contain vector data instead of the rendered image. They contain
geometries and metadata — like road names, place names, house numbers — in a compact, structured
format. Vector tiles are rendered only when requested by a client, like a web browser or a mobile app.
Rendering happens either in the client (Mapbox GL JS, Mapbox iOS SDK, Mapbox Android SDK) or on
the fly on the server (map API). The specification overview page is a great place to learn more about
the Mapbox Vector Tile Specification [Available at: https://www.mapbox.com/vector-tiles/
specification/]. Vector tiles have two important advantages over fully rendered image tiles:

• Styling: as vectors, tiles can be styled when requested, allowing for many map styles on global
data

• Size: vector tiles are really small, enabling global high resolution maps, fast map loads, and
efficient caching

Mapbox Streets, our global basemap, is entirely made of vector tiles. Any map data you upload with
Mapbox Studio is converted into vector tiles before styling.

This means there are two service endpoints: one providing tiled images (a style has been applied,
they are ready to be displayed), another providing tiled vectors (no styling information, but they
are almost ready to be rendered). While the first case is server-side rendering oriented, in the
second case, it is client-side rendering oriented, with the styling information defined/described by
the client itself, using a provided JS SDK and a styling format (MapBox GL Styles).

MapBox also provides a Studio to configure the styling applied for server-side rendering. The studio
shows two steps: the definition of the layers to inject in a tileset and the definition of the symbology.

For client-side rendering, the endpoint does provide vector tiles using the MVT format (cf.
https://www.mapbox.com/vector-tiles/specification).

Cesium

According to documentation:

3D Tiles is an open specification [https://github.com/AnalyticalGraphicsInc/3d-tiles] for streaming massive
heterogeneous 3D geospatial datasets. To expand on Cesium’s terrain and imagery streaming, 3D Tiles
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will be used to stream 3D content, including buildings, trees, point clouds, and vector data.

3D Tiles are: Open, Optimized for streaming and rendering, Designed for 3D, Interactive, Styleable,
Adaptable, Flexible, Heterogeneous, Precise, Temporal.

Also:

3D Tiles also allows us to style parts of our tileset using the 3D Tiles styling language [https://github.com/

AnalyticalGraphicsInc/3d-tiles/tree/master/Styling]. A 3D Tiles style defines expressions to evaluate color
(RGB and translucency) and show properties for a Cesium3DTileFeature [http://cesiumjs.org/Cesium/Build/

Documentation/Cesium3DTileFeature.html], a part of the tileset such as an individual building in a city.
Styling is often based on the feature’s properties stored in the tile’s batch table. A feature property can
be anything like height, name, coordinates, construction date, etc. but is built into the tileset asset.
Styles are defined with JSON and expressions written in a small subset of JavaScript augmented for
styling. Additionally the styling language provides a set of built-in functions to support common math
operations.

Several tile formats may be used to deliver 3D tiles, from the tileset’s spatial hierarchy (tileset.json
[https://github.com/AnalyticalGraphicsInc/3d-tiles#tilesetjson]) to a Batched 3D Model [https://github.com/

AnalyticalGraphicsInc/3d-tiles/blob/master/TileFormats/Batched3DModel/README.md] (*.b3dm), an Instanced
3D Model [https://github.com/AnalyticalGraphicsInc/3d-tiles/blob/master/TileFormats/Instanced3DModel/

README.md] (*.i3dm), Point Cloud [https://github.com/AnalyticalGraphicsInc/3d-tiles/blob/master/TileFormats/

PointCloud/README.md] (*.pnts) and also Vector Data [https://github.com/AnalyticalGraphicsInc/3d-tiles/blob/

79b6e8af7c0cb7ed8c935165e10b0c25cbf38ee1/TileFormats/VectorData/README.md] (*.vctr).

To drive the client-side rendering, there is a format for declarative styling defined with JSON and
expressions written in a small subset of JavaScript. This approach allows control of visibility
according to filter conditions and the ability to set the RGB color and opacity of features.

GeoServer

From the vector tiles tutorial [http://docs.geoserver.org/latest/en/user/extensions/vectortiles/tutorial.html]:

Rendering is done by the client (for example, OpenLayers), not by the server. This allows different
maps/applications to style a map differently without having to reconfigure GeoServer.

The client has native access to the actual feature information (attributes and geometry), allowing for
very sophisticated rendering.

The main disadvantage of vector tiles is that the geographic data may need to be pre-processed to
allow the client to do the drawings it requires (similar to preprocessing data for image maps). With
this in mind, vector tiles should only be used for rendering.

Again, this solution reminds the reader of the fact that with vector tiles, it is the client (not the
server) that defines the styling — empowering the client to tell many stories as maps (tile once, tell
several stories as maps). Also, interactive maps (get attributes information on features) is made
more easy and user-friendly.

According to the tutorial, MVT is the preferred format to deliver vector tiles, while GeoJSON and
TopoJSON are also supported.
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GeoServer has a so-called streaming renderer to create image tiles and another one to create vector
tiles. The second one has a special step to clip the tiles, but both use SLD for the styling. SLD is used
to configure the mapping phase internally, that is "what to style and how" according to a set of
cartographic rules (what: feature selection, scale filter / how: symbology). For vector tiles, only the
"what rules" are relevant so as to configure what data to put inside a vector tile. The "how rules"
are under the control of the client.

Interestingly, GeoServer being in some way a promoter of OGC standards, its approach does reveal
possibilities on how to use the existing standards.

6.3.5. Coordinate systems

The support for different coordinate systems is an important point due to the fact that a variety of
different systems exist for different purposes and regions. ESRI I3S, Cesium 3D Tiles and GeoServer
support all existing projection systems while MapBox supports EPSG 3857 and Ecere only EPSG
4326 (although it can import from projected systems, the GNOSIS client can re-project on the fly,
and there are plans for the GNOSIS Map Server to support re-projection).

6.3.6. Data storage

There are basically two possibilities for storing vector tiles on the server-side: using a database or
using a directory structure. The directory structure has the advantage that no extraction
mechanism needs to be implemented to access the tiles. GeoServer or CDB for instance use this
principle. The other possibility consists of using a database such as SQLite for storing the tiles. The
utilization of a database has the advantage of possible data compression while maintaining an
efficient way of accessing the tiles. The drawback is that an extraction mechanism needs to be
implemented. The OGC CDB specifications suggests a database storage model that is optimized
according to the WGS 84 coordinate system. In these specifications, a CDB-tile can contain both
vector and raster data. This has the advantage that a combination of both types of data (raster and
vector) for visualization and analysis operations becomes more efficient.

6.3.7. Generalization and filtering

When vector data is cut into smaller entities and stored in a pyramid consisting of different levels
of detail, it is necessary to generalize and filter data for data visualization. Depending on the level
of detail data can be generalized using different algorithms such as the Douglas-Peucker or the
Visvalingam algorithm or using grid-snapping. Grid-snapping implies that a regular grid with a
certain cell size is used to snap the vertices of a vector layer.

Moreover, applications can filter data depending on one or more attributes; i.e. for a vector layer
containing roads it is possible to include secondary roads in selected levels of detail only. Mapbox
supports filtering and generalization using grid-snapping and the Douglas-Peucker algorithm.
Cesium utilizes a technique of replacement and additive refinement where vertices are added or
replaced depending on the level of detail. Esri I3S uses thinning and generalization algorithms.
GeoServer does not use any generalization technique. Ecere GNOSIS uses a generalization
algorithm avoiding self-intersections and other topology errors.
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6.3.8. Support for specific geometry types and moving features

Vector data is in most cases stored as points, polylines and polygons. Lines and Polygons however
can contain curve-based sections such as arcs. Curve-based shapes allow for a more precise and
efficient representation of vector data. Many vector formats such as GML support curve-based
shapes, however when it comes to vector tiling, the handling of such shapes is more complicated.
None of the analyzed solutions supports cutting curve-based shapes.

3D data is another important geometry aspect of vector data. Only Esri I3S and Cesium (an OGC
community standard) vector tiles currently support 3D geometries. When it comes to vector tiling
an aspect of 3D data is that it can theoretically be tiled vertically as well as horizontally, creating
cubes (or bounding spheres) of vector data instead.

Moving features are another special type of geographic data. The concept of moving features
implies that the same feature can exist at different spatial locations at different times. Applied to
vector tiling this concept can be implemented in different ways. One way is to create a time
attribute for a feature and to handle moving features on a client using the attribute containing the
timestamp. In this way, a vector tile can theoretically contain the same feature several times.
Another way to implement this concept in the context of vector tiling is to generate tiles depending
on the time. A tile thereby only contains the features at a specific time and tiles overlap spatially.

6.3.9. Render-based and feature-based solutions

As stated by the Testbed 12 Engineering Report the different existing solutions can be divided into
render- and feature-based solutions. Render-based solutions are optimized for visualization (e.g. in
a web or mobile client) and feature-based solutions are optimized for allowing for providing the
ability to reassemble features that cross multiple tiles (e.g. offering the possibility to generate a
download service). MapBox clearly fits the first category while GeoServer clearly fits the last
category. The other solutions Esri I3S, Ecere Gnosis and Cesium vector tiles lay in between.

6.4. Recommendations for the OGC vector tiling model

6.4.1. Exchange format

A potential OGC vector standard should offer several possibilities for transferring vector data such
as GML or GeoJSON. This approach allows for the creation of performant web or mobile clients that
need a compact and simple exchange format, as well complex clients that need a more advanced
exchange format. A future standard should therefore allow for a parameter that defines the
exchange format.

6.4.2. Attribute handling

Only Mapbox has optimized attribute handling. Mapbox uses regular tiling and stores attributes
and geometries in the tiles. One analyzed solution, GeoServer, duplicates the attributes while two
existing solutions separate vector data and attributes.

For data layers with only a few attributes, attribute duplication does not result in performance
problems. However, if a considerable number of attributes are duplicated, this might result in data
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bloat. The separation of geometries and attributes has the advantage that no data is duplicated, but
that several web services need to be set up and utilized.

The system that has been implemented by Mapbox is an efficient alternative in terms of
minimization of redundancy while maintaining attributes and geometries in the tiles. The
drawback however is a more complex structure to generate tiles and to render the tiles on the
client.

A third alternative which has been suggested by Nordan [10] utilizes a reference system where the
attributes of a feature are stored in only one tile while all other tiles which contain parts of the
same feature simply contain a reference to the tile which contains all the attributes. This
alternative allows for a simple generation of tiles while keeping the recomposition of features from
a set of tiles simple. Although none of the existing solutions implements this system, the
recommendation is to consider it for a future vector tiling standard due to the facts that:

1. This approach is relatively simple to implement.

2. This approach reduces the amount of data even if the data layer contains several attributes.

3. This approach allows for geometries and attributes to be served using one single web service.

6.4.3. Tiling scheme

In the existing solutions that have been analyzed, basically two types of tiling schemes are
implemented: a regular scheme (Ecere Gnosis, GeoServer, MapBox) and an irregular weight-based
tiling scheme (Cesium vector tiles and I3S)

From the authors’ perspective, a regular tiling scheme based on the established WMTS standard
which has been used for raster tiling would be the solution that has most advantages and fewest
disadvantages:

1. WMTS already exists and would allow tiled vector services to be easily combined with tiled
raster layers.

2. WMTS already has support for all existing coordinate systems.

The disadvantages are that empty tiles can be generated and/or served to a client and that attribute
handling becomes slightly more difficult (see previous section "Attribute handling")

6.4.4. Styling

Considering the visualization case, styling choices start as soon as features are filtered so as to
select those that have to be rendered in relation to symbolizers. While revisiting the OGC Portrayal
model, these styling choices are revealed by the following rendering pipeline:

(DATA) > TILING > CLIPPING > FILTERING > MAPPING > RENDERING > VIEWING

With the following details for each step:

• TILING: create the requested tiles according to a pyramid tiles scheme (including generalization,
SRS transformation)
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• CLIPPING: considering render-based vector tiling, clipping in a step to avoid bad rendering
effects on the boundaries when merging tiles together into an image

• FILTERING: configure the tiles, i.e. what are the data inside according to filtering rules in term of
feature selection and scales

• MAPPING: describe the symbology rules in term of visual variables

• RENDERING: produce tile images by applying the mapping rules on the configured tiles

• VIEWING: display the tile images to the exact boundary of each tile

The intent of this section is to show how vector tiling is relevant when it is important for the client
to perform the rendering by applying some mapping rules (client-side rendering). We may then
distinguish server-side rendering, which includes the steps from TILING to RENDERING and does not fit
the purpose (the server performs the rendering, the client only the VIEWING step).

(DATA) > TILING > CLIPPING > FILTERING > MAPPING > RENDERING > *VIEWING*

Hereunder we describe how vector tiling standardization can be relevant to help the client to
control and perform the rendering (that is with the above intent in mind). We consider three client-
server divisions, A, B and C:

A: (DATA) > TILING > CLIPPING > FILTERING > *MAPPING > RENDERING > VIEWING*

In this situation, it is up to the client to be able to read the data in the tiles, to associate a relevant
symbology (either the developer who has predefined a symbology or the final user by using a style
editor) and to render the map. Some software (e.g. JavaScript SDK) is required to play the rendering
engine, not necessarily compliant with some styling standards. Nonetheless, in term of
standardization, and especially for an overall vector tiling use case which is render-based, it is
recommended that the vector tiling service endpoint provides a description of a default symbology
to apply be applied client-side.

B: (DATA) > TILING > CLIPPING > FILTERING > MAPPING > *RENDERING > VIEWING*

In this situation, only the RENDERING step is in addition to the client’s responsibility, while the
MAPPING is defined by a third party, i.e. the definition of the mapping rules. Especially, mapping rules
may be provided by standardized catalogs of styles. In relation to OGC standards, this functionality
is similar to the Symbology Management methods offered by SLD1.0 (in particular GetStyles). The
client may then select from a catalog the description of one (or more) symbology ready to be
applied to the vector tiles to be rendered. Such a description then requires a standardized language
to formulate the symbology, just like SE1.1, the current OGC Symbology Encoding standard.
Currently, these standards are under a major revision. Render-based vector tiling is a use case that
should be considered by the SLD/SE SWG working on the revision. Again, this use case stress the
importance to have a modern, common cartographic language to exchange styling information
from one system to another.
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C: (DATA) > TILING > CLIPPING > *FILTERING > MAPPING > RENDERING > VIEWING*

In this situation and in comparison to situation A, even the FILTERING step is in addition to the
client’s responsibility. Filtering rules may be defined internally by the service endpoint, by feature
selection (on attributes) and in relation to map-rendering scales (synchronized with the zoom levels
of the tileset). Internally, this mechanism is not necessarily standardized. Nonetheless, it may be
important for the cartographer to be informed about these internal filtering choices that have been
set. Such information are similar to the sld:LayerFeatureConstraints element offered by SLD1.1 to
specify what features of what feature type to include in the tiles and to set a filter to select features
in relation to attribute values. Such an element would also need a way to set scale filtering just like
the SE1.1 standard does offer with the MinScaleDenominator and MaxScaleDenominator elements.
Again, it is recommended for a vector tiling endpoint service to offer Symbology Management
methods like GetStyles so that the client gets the information about the filtering rules chosen
internally. Also, to complete the logic, such standardized elements for controlling the filtering rules
would even be relevant to allow the client to define by itself what data should be inside the
provided vector tiles. Indeed, it makes sense to allow the control of these mapping filters, because it
would be hard for a cartographer to unlink these two aspects during a cartographic design. Thus,
we should rather consider a STYLING step as the combination of the FILTERING and MAPPING steps. And
situation B would then clearly appear as a intermediate situation, allowing only a partial control of
the styling process.

It is worth to notice that GeoServer does have an internal use of these SLD/SE abilities to set
filtering rules. Nonetheless, it uses the se:Rule element and not the sld:LayerFeatureConstraints as
suggested above. Indeed, while this is elegant in some ways, attention has to be paid to the fact that
se:Rule is rather a concept to build symbology and not to "pre-filter" data. For instance, a list of
se:Rule are generally used to define choropleth maps or other maps which need to classify features
into categories, each applying different symbolizers.

Finally, and to summarize, it is mainly recommended to attach to a vector tiling service a styling
profile with some similar abilities SLD is offering to WMS, including the ability to use a
standardized cartographic language to exchange styling information from one system to another.

6.4.5. Coordinate systems

Most existing solutions allow for several coordinate systems to be utilized. The only solution that to
the best of the authors’ knowledge does not and will not provide support for other coordinate
systems than EPSG-3857 WGS84 Web Mercator (Auxiliary Sphere) is MapBox. A future standard
should offer the possibility to utilize all existing coordinate systems due to the following reasons:

1. Implementing a client which combines projected WMTS raster data and tiled vector data would
be required to do the projection "on the fly". This can imply a more complicated client
implementation.

2. In terms of precision there can be potential problems. For instance if a local projection system is
used, the conversion from a very local to a global system can imply problems regarding
rounding errors and subsequent precision of the coordinates.

3. Some entities, such as states may not want their data to be reprojected into another system for
political reasons.
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4. All commonly used OGC standards such as WMS, WFS and WMTS support all coordinate
systems.

On the other hand, the OGC CDB standard uses the WGS 84 coordinate system and includes both
raster and vector data. In terms of efficiency for visualization and analysis operations the CDB
standard is a very interesting approach. Due to the aforementioned reasons (e.g. possibly
combining with existing OGC WMS/WMTS/WFS services that utilize projected coordinates,
precision, political reasons) the CDB approach should not be considered as an exclusive basis for a
future standard, but rather as a source of inspiration such as a way to structure data in a database
that is serving vector tiles.

6.4.6. Data storage

It is suggested that a future vector tiling standard should not define how vector data should be
stored (e.g. using a database or using a directory structure).

6.4.7. Generalization and filtering

A future vector tiling standard should allow for a vector layer to be generalized and filtered is data
is rendered in a client. Simple coordinate snapping as it is implemented in MapBox can have the
consequence of broken topologies. For a render-based service this problem might be less important.
However, for a feature-based service the possibility for serving a generalized (and optionally
filtered) vector layer with proper topology is crucial if a client should be allowed to reassemble
features that have been transferred using vector tiles.

6.4.8. Support for specific geometry types and moving features

The support for curve-based shapes has not been implemented in any of the analyzed solutions.
The obvious reason is that it is more difficult to properly cut an arc, than to convert the arc into
segments and to cut the segments afterwards. If a future vector tiling standard must include
support for curve-based shapes and the curve-based shape should be exactly the same as in the
original data, then there is basically just one solution: to store the curve-based shape in all tiles that
are concerned and to eliminate duplicate shapes on the client.

6.4.9. Render-based and feature-based solutions

A feature-based solution should be preferred over a render-based solution due to the fact that
feature-based solutions allow for more flexibility such as:

1. Easy combination of raster layers and vector layers in one client.

2. The possibility to create services that allow clients to easily reassemble features (e.g. download
services).

6.5. Evaluation matrix
Evaluation matrix
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Mapbox Cesium 3D
Tiles

Esri I3S Ecere Geoserver

Projection

a. WGS84
(EPSG: 4326)
b. ETRS89
(EPSG: 4258)
c. British
National Grid
(EPSG: 27700)
d. Support

a. X
b. X
c. X
d. EPSG 900913
- EPSG 3857 ⇒
client / MVT
format ⇒ All
coordinates
systems

a. ✓
b. ✓
c. ✓
d. EPSG 3857

a. ✓
b. ✓
c. ✓
d. All projected
coordinates
systems

a. ✓
b. X (supported
as input,
planned re-
projection)
c. X (supported
as input,
planned re-
projection)
d. All projected
coordinates
systems as
input; re-
projection
(planned)

a. ✓
b. ✓
c. ✓
d. All projected
coordinates
systems

Styling
support

a. description

✓

a. Mapbox
Styles API
Mapbox Style
Specification
(CartoCSS,
Mapbox GL
Styles, cf “The
end of
CartoCSS”)
Mapbox Studio

✓

a. 3D Tiles
styles
Cesium styling
API
Change style
on the fly

✓

a. JSON file
Feature Data

✓
a. GNOSIS
Cascading Map
Style Sheets,
SLD/SE
support, SLD
served from
WFS
Change style
on the fly

✓

a. client side
(e.g Open
Layers)
SLD file from
Geoserver

Tiling
attribution

a. tiling
schemes
b. storage
structure

a. Google tile
scheme:
standard
quadtree -
256×256 pixels
- possibility to
create buffer 
b. MBTiles files
: SQLite
database with
vector tiles in
pbf (Google
Protocol
Buffer) / MVT
format
Possibility to
store tiles in
folders
(hierarchical
structure)

a. quadtree - k-
d trees -octrees
- grids and
variants
Size of the tile
and scheme
not necessarily
regular
b. tileset.json

a. quadtree -
octree - R tree
hierarchical,
node-based
spatial index
structure
b. Scene Layer
Packages
(SLPK)

a. modified
quadtree
polar tiles have
3 child nodes
rather than 4
b. GNOSIS data
store (SQLite
datbase +
geometry tile
pyramids)

a. standard
quadtree -
256×256 pixels
by default -
buffer tile size
adaptable
b. Folder
hierarchy
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Support of
geometry
types

a. points
b. polylines
c. polygons
d. multi-part
e. arcs
f. splines

a. ✓
b. ✓
c. ✓
d. ✓
e. X
f. X

a. ✓
b. ✓
c. ✓
d. −
e. −
f. −

a. ✓
b. ✓
c. ✓
d. X
e. X
f. X

a. ✓
b. ✓
c. ✓
d. ✓
e. X
f. X

a. ✓
b. ✓
c. ✓
d. ✓
e. X
f. −

Support for
3D data

X ✓
3D model,
points cloud,
terrain

✓ X (planned: 3D
models, points
cloud, terrain)

X

Generalizatio
n / Filtering

a. algorithms
b. parameters

✓ / ✓

a. Grid
coordinates
(snapping) /
Douglas
Peucker /
Filtering 
b. −

X / X

a. replacement
and additive
refinement
b. −

✓ / -

a. thinning -
clustering -
generalization
-mesh
-pyramids
b. resolution,
screen size,
bandwidth and
available
memory and
target
minimum
quality goals

✓ GNOSIS
Vector Tiling
Service / - 

a. GNOSIS
generalization
algorithm
b. −

X / X

a. −
b. −

Formats

a. input
formats
b. output
formats
c. storage
format

a. GeoJSON,
Shapefile, KML,
GPX, CSV,
MBTiles
b. Google
Protobufs
(PBF) MVT
c. MBTiles

a. Collada
(dae) - OBJ -
others
b. GLTF (GL
Transmission
Format): i3dm,
b3dm, vctr
c. tileset.json

a. Esri formats
b. Indexed 3D
Scene Format
Scene Layer
Packages (SLPK
files)
c. Scene Layer
Packages
(SLPK)

a. Shapefile,
GML, OSM pbf
for GNOSIS Map
Server 
b. GNOSIS
Vector Tiles
Binary
Representation
, GML,
GeoECON,
GeoJSON
c. GNOSIS data
store
(geometry tile
pyramids +
attributes
stored in a
SQLite
database)

a. shapefiles,
PostGIS, others
formats using
plugins
b. MapBox
Vector (MVT)
format pbf,
GeoJSON,
TopoJSON
c. Folder
hierarchy

Open source
or proprietary

Open source
except Mapbox
GL

Open source /
server-side is
closed source

Proprietary Proprietary
(portions e.g.
Ecere SDK
open-source)

Open source
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Handling of
attributes

a. method

✓

a. Tag system

✓

a. −

✓

a. Attributes
separated from
geometries
ID (API
RESTFUL) or
cached
attribute
information

✓

a. Attributes
stored in a
SQLite
database
ID used to get
attributes

✓

a. Attributes
are stored in
each tile
(redundancy)

Possibility to
combine with
existing OGC
services and
standards

a. WMS
b. WMTS
c. WFS
d. SLD/SE

✓

a. ✓
b. ✓
c. X
d. X

✓

a. ✓
b. ✓
c. ✓
d. −

✓

a. ✓
b. ✓
c. ✓
d. ✓

✓

a. ✓
b. ✓
c. ✓
d. ✓

✓

a. ✓
b. ✓
c. ✓
d. ✓

Sustainability

a. Estimation
of the number
of deployments
b. Stable
release
c. Estimation of
the size of the
company

a. frequently
used → very
popular
b. ✓
c. ≈ 200

a. increasingly
used
b. ✓
c. ≈ 20

a. increasingly
used
b. ✓
c. ≈ 3000

a. under
development
b. under
development
c. ≈ 5

a. frequently
used for all
kinds of web
services
b. ✓
c. ≈ 100

Ability of the
client to
reassemble
features

a. method

✓

a. −

− ✓

a. −

✓ X

Support for
moving
features

X X X ✓ X

Combination
of layers

− ✓ − ✓ ✓
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Render /
feature based

a. visualization
b. identify
feature
c. analysis /
edit ⇒
transactional
(CRUD)

a. ✓
b. ✓
c. X

a. ✓
b. ✓
c. ✓

a. ✓
b. ✓
c. X

a. ✓
b. ✓
c. X

a. ✓
b. ✓
c. X

Legend

✓ : The solution implements the criterion
X : The solution does not implement the criterion
✓ : The solution implements the criterion - to be verified
X : The solution does not implement the criterion - to be verified
− : No information found - to be analyzed
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Chapter 7. Vector Map Tiling Service

7.1. Overview
This chapter presents the work carried out to implement a vector map tiling service based on
Ecere’s GNOSIS Map Server.

7.1.1. GNOSIS Map Server

 

To implement the Vector Map Tiling Service, improvements were made to Ecere’s GNOSIS Map
Server. The GNOSIS Map Server is Ecere [http://ecere.ca]'s solution for building large scale spatial data
infrastructures, and part of the GNOSIS Geospatial Software Suite [http://ecere.ca/gnosis]. GNOSIS is
built from the ground up atop Ecere’s Free and Open Source Cross-Platform Software Development
Kit [http://ecere.org], and written in the eC language [http://ec-lang.org] for both optimal native runtime
performance as well as development efficiency. A demonstration service is hosted at
maps.ecere.com [http://maps.ecere.com]

7.1.2. Tiling WFS

The Vector Map Tiling Service efforts focused on the delivery of a dynamic WFS tiling service,
serving arbitrary rectangular blocks of vector data aligned to a WGS-84/EPSG:4326 grid. Because
WFS offers such a rich set of capabilities (filtering, queries, transactions…) and already has all the
foundation for serving tiled vector data (e.g. it already supports a bounding box parameter), the
standard would benefit greatly from a standard approach to serve vector tiles. Extensions that
minimize the number of changes required for existing WFS clients and services are proposed in
this chapter. These suggested changes have been implemented in the GNOSIS map service. All that
is required is a zoomLevel parameter and proper use of the bounding box parameter.

7.1.3. Vector enabled WMTS

Adding basic vector tiles capability to WMTS was also easily done, for example GeoServer already
supports this capability. All that is required is supporting one or more vector output format. The
GNOSIS Map Server will also feature an implementation of a WMTS service capable of serving
vector tiles, as described in the proposed extensions below.

7.1.4. Tiling WFS or vector capable WMTS?

Generally speaking, WFS has a much richer set of capabilities than does a WMTS instance. A WMTS
solution would be preferable in two scenarios:

• If either the server and/or client software involved already implements support for WMTS, but
not for WFS

• If complex vector operations such as transactions, filtering or queries are not required
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The fact that this dilemma exists seems to predict an imminent convergence trend for web mapping
services.

7.1.5. A Unified Mapping Service

One might also have a need for a tiled coverage service. Server-side rendering (as in WMS) of tiles
rather than entire views might be useful so they can be cached on the client. Many concepts are
shared between different types of map layers (coverages, imagery, vector data), for example:

• Identifying layers and features

• Coordinate reference systems

• Tiling schemes

• Geospatial extents

• Spatial operations

• Time series

• Styling

These concepts have different semantics in current OGC standards (such as WMS, WMTS, WCS and
WFS) and are described in lengthy documents. An example is 'typename' in WFS vs. 'layer' in WMTS
(the latter is much more intuitive). Implementing support for all of these semantics/concepts in
clients and services is a tedious task and interoperability suffers from unnecessary complexity. The
development of a new Unified Map Service is proposed, based on ECON and JSON rather than XML
(clients could always use either ECON or JSON). A prototype service within the GNOSIS Map Server
was initiated by Ecere. The focus is to enable the capabilities to serve imagery, gridded coverage or
vector data from the same end-point.

7.2. Tiles on request
The implemented tiled map server (for its WFS, WMTS and UMS implementations) provides vector
tiles following the principles below.

7.2.1. Optimal query performance when requesting compact binary
representation and default tiling scheme

The tile data sets for the layers are stored on the server in the GNOSIS data store, GNOSIS Compact
Vector Tiles format and GNOSIS tiling scheme.

7.2.2. Efficient on-the-fly merging and tiling for arbitrary WGS-84-aligned
tiles or bounding box query

Other tiling schemes aligning with EPSG:4326, such as all the tiling schemes defined in Annex E of
WMTS 1.0.0, are already supported.

7.2.3. On-the-fly conversion to multiple supported formats

The following formats are supported:
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• GML

• GNOSIS Compact Vector Tiles

• GeoECON

• Support for GeoJSON [http://geojson.org/] is planned for the future

• Other formats such as Mapbox Vector Tiles could also be supported

7.2.4. Opportunity to later add server side on-the-fly reprojection and
support additional tiling schemes

The approach allows for extension, such as addition of on-the-fly reprojection and support
additional tiling schemes.

7.3. Vector Tiling Considerations
Vector tiling is a complex problem with a number of important considerations. The primary aspects
consist in the representation of the data, the data store as well as the tiling scheme. The approach
for these aspects used within the GNOSIS Map Server is briefly discussed here, and in greater
details within the annexes. However, support for representations, data stores and tiling schemes
can vary between implementations, and a single implementation can offer support for a number of
them. All WFS and WMTS extensions being proposed, as well as the proposed concepts of a Unified
Map Service, are agnostic in relation to these aspects.

7.3.1. Vector Data Representation

A number of formats exist for describing, communicating and/or storing vector data, such as GML,
GeoJSON, TopoJSON, Mapbox PBF. Some are geared strictly towards visualization while others
towards preserving information for analysis. The GNOSIS compact vector tiles format is described
in annex B as a proposed compact binary format to efficiently store and/or transmit tiled vector
data. The proposed format is suited for both visualization and analysis, ready for hardware
accelerated rendering. Vertices are localized to maximize precision, proper topology is ensured,
indices allow re-using vertices and can be directly used in OpenGL rendering calls, areas are pre-
tessellated using Delaunay triangulation [https://en.wikipedia.org/wiki/Delaunay_triangulation] to
maximize fill rate. Polygons can also optionally define center lines useful for labeling and other
applications. Another text based representation, GeoECON is described in annex C.

Marking artificial segments rather than using a tile border

Tiling of polygons has particular considerations, especially if the resulting clipped polygons are to
have their edges drawn. Artificial vertices introduced by the clipping would normally result in
unwanted edges to be drawn. Recently, some implementations focused on display have avoided the
issue altogether by using a small border around the tile. This however has a number of drawbacks,
for example overlapping polygons drawn with translucency could have their overlapped region
darker. The work-around also complicates the task of merging the tiles back together, and generally
just creates bad topology. An alternative is to instead identify those artificial vertices and borders,
and this is should be the preferred approach in a comprehensive vector tiling standard.
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GML Extension

A simple extension to GML is proposed to identify those artificial segments within a LineString, as
such:

   <gms:hiddenSegments>100-103, 106-107</gms:hiddenSegments>

which means that the segments from the 101st point to the 104th point (the hiddenSegments indices
are 0-based) should not be drawn, and neither should the segment from the 107th to the 108th
point.

The proposed change request has been submitted as OGC (CR 515 [http://ogc.standardstracker.org/

show_request.cgi?id=515]).

Artificial segments in GNOSIS Map Server

For the GNOSIS Compact Vector Tiles, vertex flags are used instead to identify artificial vertices. The
GNOSIS Map Server WFS supports both requesting an extra border or relying on marked hidden
segments. In terms of processing for the server, when using the same tiling scheme on the client as
on the server (the GNOSIS Global Grid in this case), relying on these hidden segments rather than
requesting an extra boundary has significant advantages. When the requested extent matches the
data store tile exactly, the processing is minimal. If the requested extent is smaller than the data
store tile, clipping must occur. If the requested extent encompasses more than 1 tile, the service will
merge tiles back together to form the request. Therefore using these hidden segments and
requesting the tiles in the data store native tiling scheme will result in optimal performance, while
avoiding rendering issues.

GeoJSON Extension

A solution to indicate hidden segments would also be required for GeoJSON.

Stored length and area for entire records tiled among tiles

Being aware of some properties of the overall shape of a feature corresponding to some part within
a tile is necessary for a number of reasons such as labeling considerations, for example to
automatically judge its scale rank / importance. For this reason the GNOSIS Map Server outputs the
area for a polygon and the length of a line as automatic attributes.

Automatic GML length and area attributes

The overall (across other tiles) length of a line feature is stored with the special gms:length
attribute. The overall (across other tiles) area of a polygon feature is stored with the special
gms:area attribute.
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   <gml:featureMember>
     <gms:gnosis-test-polygons gml:id="2">
        <gms:geometry>
            <gml:Polygon>
               <gml:outerBoundaryIs>
                     <gml:LinearRing><gml:posList srcDimensions="2">15 15 0 30 0 15 15
15 </gml:posList>
                        <gms:hiddenSegments>1-2</gms:hiddenSegments></gml:LinearRing>
               </gml:outerBoundaryIs>
            </gml:Polygon>
        </gms:geometry>
        <gms:id>2</gms:id>
        <name>It works!</name>
        <stuff>9876</stuff>
        <numbers>2.718</numbers>
        <gms:area>0.0685389194520094</gms:area>
     </gms:gnosis-test-polygons>
   </gml:featureMember>

7.3.2. Storing tiles and attributes

The data store used by the GNOSIS Map Server is capable of storing tiled geospatial data of different
types (gridded coverage, imagery, vector data). For vector data, attributes are stored separately
from the geometry tiles in a spatially indexed SQLite relational database. This approach is
described in detail in annex D . A simple folder hierarchy can also be used to store tiles as
individual files, but this may result in significant file system overhead when dealing with a large
number of small files. An alternative way to describe the attributes in a relational manner using
ECON, and leveraging string and attributes tables to optimize storing values occurring multiple
times. This is also proposed in annex C.

7.3.3. Tiling Scheme

The tiling scheme used by the GNOSIS Map Server is a quad-tree based on WGS-84 (EPSG:4326),
with special considerations for the poles. At zoom level 0, the grid is made up of 8 90° x 90° tiles,
which are split in 4 at each next level. In order to maintain an approximate longitudinal density,
tiles touching the poles are split in 3 rather than 4, thus there are always only 4 tiles at the poles.
This approach is described in more details along with figures in annex A.

7.4. WFS Service & Extensions
An extended WFS service supporting vector tiles was implemented using Ecere’s GNOSIS Map
Server.

7.4.1. General considerations

The GetCapabilities end-point for the tiled WFS service is available at:
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetCapabilities
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The WFS service works as is with regular existing WFS clients (it has been tested successfully using
the default QGIS version 2.18.2, without requiring any plug-in).

However, clients will benefit from higher usability if they automatically fetch new data when
changing zoom levels & panning. For good performance, clients should also use a tiling scheme and
cache tiles accordingly.

To clarify how the WFS service behaves in regard to lat, lon vs. lon, lat:

• <DefaultSRS>urn:ogc:def:crs:EPSG:4326</DefaultSRS> is specified for the FeatureType

• The FeatureCollection has a boundedBy specified with srsName="urn:ogc:def:crs:EPSG:4326"

• Points within the GML output of GetFeature are specified latitude, longitude

• The &bbox= parameter order is lowerLeft.lat, lowerLeft.lon, upperRight.lat, upperRight.lon

• It was discovered that OGR and QGIS do not treat the coordinates as lat, lon based on the nature
of EPSG:4326 if the SRS is specified as simply 'EPSG:4326', unless OGR is configured with
GML_CONSIDER_EPSG_AS_URN=yes.

The 'urn:ogc:def:crs' prefix has been added in the WFS service to avoid that
confusion.

WFS version: Even though it advertises WFS 2, the current GNOSIS map server WFS handles WFS 1
requests better than WFS 2. It does not currently support the WFS 2 stored queries (or any query);
only basic GetCapabilities, DescribeFeatureType, GetFeature. Bug reports or guidance in helping to
improve the compliance of the GNOSIS map server with WFS2 (or WFS1) are welcome.

Extensions are prefixed with the gms: name space (GNOSIS Map Server). A proper .xsd file would be
required (currently http://maps.ecere.com/gms is a placeholder).

7.4.2. Zoom Level query (GetFeature)

The service supports the extension to specify a zoom level through the &zoomLevel= parameter for
a particular request:

service=WFS&version=1.1.0&request=GetFeature&typeName=ne_10m_admin_0_countries&bbox=-
90,90,0,180
   &tilingScheme=GNOSISGlobalGrid&zoomLevel=1

This zoom level references a zoom level smaller or equal to the MaxZoomLevel associated with the
selected tiling scheme.

If no zoom level is specified, the service will guess a reasonable zoom level based on the requested
extent.

The proposed change request has been submitted as OGC (CR 514 [http://ogc.standardstracker.org/

show_request.cgi?id=514]).
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7.4.3. Bounding box query (GetFeature)

The tile could be auto-selected by using the existing bbox parameter:

service=WFS&version=1.1.0&request=GetFeature&typeName=ne_10m_admin_0_countries&bbox=-
90,90,0,180&

Minimizing required changes to client & services to support access to tiled WFS service by using
bbox rather than tile IDs. IDs could necessitate complex TilingMatrix descriptions for custom tiling
matrices.

However, the interpretation of BBOX in this vector tiling service and clients is that the geometry be
cleanly cut against the specified bounding box, rather than simply filtered. If this conflicts with
existing standards and implementations, an alternative parameter cleanly cutting features might
be preferable.

7.4.4. Tiling scheme information (GetCapabilities)

Within an individual wfs:FeatureType of a GetCapabilities request, a gms:TilingScheme is provided
indicating support for a particular tiling scheme, referencing a well known tile matrix set by an
identifier, and including a maximum zoom level. For example:

   <wfs:FeatureType>
      <Name>ne_10m_admin_0_countries</Name>
      <Title>ne_10m_admin_0_countries</Title>
      <Abstract>ne_10m_admin_0_countries</Abstract>
      <ows:Keywords><ows:Keyword>ne_10m_admin_0_countries</ows:Keyword></ows:Keywords>
      <DefaultSRS>urn:ogc:def:crs:EPSG:4326</DefaultSRS>
      <OutputFormats>
      <Format>text/xml; subtype=gml/3.1.1</Format>
      </OutputFormats>
      <ows:WGS84BoundingBox dimensions="2">
      <ows:LowerCorner>-180.000000 -90.000000</ows:LowerCorner>
      <ows:UpperCorner>180.000000 83.634094</ows:UpperCorner>
      </ows:WGS84BoundingBox>
      <gms:TilingScheme>
         <ows:Identifier>GNOSISGlobalGrid</ows:Identifier>
         <gms:MaxZoomLevel>5</gms:MaxZoomLevel>
         <gms:MaxScaleRF>1:4,000,000</gms:MaxScaleRF>
      </gms:TilingScheme>
   </wfs:FeatureType>

Currently, the service only advertises the GNOSISGlobalGrid tiling scheme within the
<wfs:FeatureType>. In addition to the zoom level number, the associated scale is presented as a
representative fraction as well. A tiling scheme specified in the request would also be the reference
for identifying tiles by row and column indices, in addition to the zoom level, if support for tile keys
(row/columns, IDs) was to be implemented rather than using the &bbox= parameter:

40



service=WFS&version=1.1.0&request=GetFeature&typeName=ne_10m_admin_0_countries&
    tilingScheme=GlobalCRS84Scale&
    zoomLevel=1&
    tileRow=1&
    tileCol=2

7.4.5. Vector type information (GetCapabilities)

Another extension the service supports is providing metadata about the vector feature type straight
from the GetCapabilities. GNOSIS treats layers with points, lines or areas (polygons) separately and
this avoids having to issue a GetFeature request for each layer before understanding what basic
feature type the client is dealing with. This is done like so:

   <gms:VectorType>areas</gms:VectorType>

The proposed change request has been submitted as OGC (CR 516 [http://ogc.standardstracker.org/

show_request.cgi?id=516]).

7.4.6. Hidden segments capabilities (GetCapabilities, GetFeature)

Another extension is the capability to identify segments of areas that should not be rendered (such
as an area that was cut by the tile boundary). This capability is advertised with:

   <gms:HiddenSegments>yes</gms:HiddenSegments>

The hidden segments within the GML will be generated if and only if &hiddenSegments=1 is used in
the request.

7.4.7. Querying style sheets

An extension to request a default style sheet associated with each layer could be supported. The
syntax could be:

service=WFS&version=1.1.0&request=GetStyles&typeName=Road&outputFormat=SLD

which would then return an SLD/SE styles description. If supported, other style sheet formats could
be used as well (as discussed below under Styling).

7.4.8. Separate and partial query of attributes (GetFeature)

The existing WFS standard already provides tools by which attributes can be requested separately
from geometry, thus avoiding exchanging the same large amount of information found in many
separate tiles. The GNOSIS compact vector tiles format also does not store attribute data. Attribute
data are stored in a relational database (a SQLite approach is described in annex D, and one using
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ECON in annex C). The attribute data can be retrieved separately with the GML outputFormat.
Properties to be returned can be selected individually using the PROPERTYNAME=, including the
'geometry' property (presented as gms:geometry by the GNOSIS map server) which will determine
whether the geometry is sent or not. Additionally, the features to be returned can be limited with
the FEATUREID= (REOURCEID= in WFS 2), thus permitting to query the attributes of specific
records. The concept of having only a few (anchor) tiles storing attributes is really not necessary
and is not an intuitive solution, neither for exchange nor from a data store perspective where a
spatially indexed relational database is a better place to store attributes. Instead, different
strategies can be implemented by the client to request attributes:

• Retrieve them together with the tiles geometry (a reasonable solution if the attribute data is
limited, or only a few attributes are of interest and can be selected with PROPERTYNAME)

• Separately retrieve all attributes of interest after a few tiles have been retrieved, specifying both
PROPERTYNAME and FEATUREID matching the tile geometry recently retrieved

• Request all attributes at once for one or more bounding boxes (BBOX) matching a group of tiles,
specifying PROPERTYNAME for those of interest

7.5. Proposed WMTS Extensions
A proposed WMTS service supporting vector tiles has been investigated by using Ecere’s GNOSIS
Map Server.

7.5.1. Vector tiles format (GetTile)

In order to support vector data, new values for <Format> could simply be added to request vector
data, e.g.:

      <Format>image/jpg</Format>
      <Format>image/png</Format>
      <Format>text/xml; subtype="gml/3.1.1"</Format>
      <Format>application/vnd.gnosis-map-tile</Format>
      <Format>application/vnd.geo+econ</Format>
      <Format>application/vnd.geo+json></format>
      <Format>application/vnd.mapbox-vector-tile</Format>
      <Format>application/vnd.esri-shapefile></format>

The proposed change request has been submitted as OGC (CR 517 [http://ogc.standardstracker.org/

show_request.cgi?id=517]).

Through the typical image formats, it would also be possible for a WMTS server to style and render
vector data (WMS-style, as it is planned to be supported in the proposed Unified Map Service).

7.5.2. Separate and partial query of attributes

An extension to allow specifying PROPERTYNAME and FEATUREID in a GetTile request would make
it possible to query attributes separately, and could work essentially the same as they do for the
WFS’s GetFeature request. A mechanism to list available attributes would also be useful, and the
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DescribeFeatureType request from WFS could be supported.

7.5.3. Varying width tiling matrix (GetCapabilities: <TileMatrix>)

To support variable width tiling matrices, such as the GNOSIS pole-adjusted tiling scheme described
in Annex A, an extension allowing to specify different widths per tile row is proposed.
VarMatrixWidth could be introduced specifying ranges of rows to which a given width applies. For
example, MatrixWidth of 4 for rows 0 and 7; 8 for rows 1 and 6; and 16 for rows 2, 3, 4 and 5 could
be specified this way:

    <VarMatrixWidth>0,7:4 1,6:8 2-5:16</VarMatrixWidth>

The proposed change request has been submitted as OGC (CR 518 [http://ogc.standardstracker.org/

show_request.cgi?id=518]).

The first 3 levels of the GNOSIS tiling scheme could be described as such:

    <TileMatrixSet>
      <ows:Identifier>GNOSISTilingScheme</ows:Identifier>
      <ows:SupportedCRS>urn:ogc:def:crs:EPSG::4326</ows:SupportedCRS>
      <TileMatrix>
        <ows:Identifier>0</ows:Identifier>
        <ScaleDenominator>1.30452528E8</ScaleDenominator>
        <TopLeftCorner>-180.0 90</TopLeftCorner>
        <TileWidth>256</TileWidth><TileHeight>256</TileHeight>
        <MatrixWidth>4</MatrixWidth><MatrixHeight>2</MatrixHeight>
      </TileMatrix>
      <TileMatrix>
        <ows:Identifier>1</ows:Identifier>
        <ScaleDenominator>6.5226264E7</ScaleDenominator>
        <TopLeftCorner>-180.0 90</TopLeftCorner>
        <TileWidth>256</TileWidth><TileHeight>256</TileHeight>
        <VarMatrixWidth>0,3:4 1-2:8</VarMatrixWidth><MatrixHeight>4</MatrixHeight>
      </TileMatrix>
      <TileMatrix>
        <ows:Identifier>2</ows:Identifier>
        <ScaleDenominator>3.2613132E7</ScaleDenominator>
        <TopLeftCorner>-180.0 90</TopLeftCorner>
        <TileWidth>256</TileWidth><TileHeight>256</TileHeight>
        <VarMatrixWidth>0,7:4 1,6:8 2-5:16</VarMatrixWidth>
         <MatrixHeight>4</MatrixHeight>
      </TileMatrix>
      ...
    </TileMatrixSet>
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7.6. A Unified Mapping Service providing equivalent
functionality to WMS, WMTS, WFS, WCS & CSW
A Unified Map Service regrouping most capabilities of WFS, WMS, WCS, WMTS and Catalogue
Services for the Web (CSW) with shared semantics based on JSON & ECON is described in this
section.

The proposed change request has been submitted as OGC (CR 524 [http://ogc.standardstracker.org/

show_request.cgi?id=524]).

7.6.1. Built on ECON and JSON [http://json.org] (option to use either) rather
than XML

7.6.2. Shared semantics and tiling structure across geospatial data types

UMS would regroup all functionality of the WMTS & WFS service, including basic operations such
as:

• Listing layers, supported formats, supported tiling matrices

• Retrieving tiles for a given layer and list of tile keys (made up of zoom level, latitude & longitude
index, temporal key if applicable)

• Querying specific set of attributes for a given list of tiles, which should be possible either as a
separate query or within the same query to avoid a client/server round-trip

7.6.3. Simple by design

An overarching goal for UMS would be simplicity by design:

• Keeping the specifications as concise as possible

• Keeping to a minimum the functionality required to be implemented

• Making it easy to progressively implement functionality for new capabilities

• Thoroughly validating all basic use cases before releasing a first version of the standard to
minimize future interoperability issues

7.6.4. Format agnostic

Like the proposed WMTS and WFS extensions, UMS could be used to serve any geospatial data
format. The GNOSIS map tile format would be the default transfer format for the GNOSIS map
server, capable of transmitting various types of geospatial data. The GNOSIS Map Server UMS
would initially support the following formats:

• GNOSIS Compact Vector Tiles

• Raster imagery

• Gridded coverage

• GeoECON
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• GML

• GeoJSON

In addition to supporting various formats, a selection of compression algorithms will be available
for both vector as well as coverage and imagery data.

3D terrain elevation models can efficiently be served through the compressed quantized
representation described in Annex D.

Support for tiled 3D models and point clouds, with varying levels of detail is planned to be added to
the GNOSIS Map Tile format, and would be supported by the UMS.

7.6.5. Requests

The following requests would be supported.

Capabilities

• GetCapabilities

◦ Version information

◦ Supported requests

◦ Output formats

Cataloging

• GetLayersList

◦ Support for organizing layers in hierarchical collections (regrouping layers and collections)

◦ Returns a list of layers or collections contained within the root collection or within a given
sub-collection of layers. Each listed layer would also include basic information (as in
GetLayerInfo) by default.

◦ Support for filtering based on data type, scale / resolution, geospatial extent, temporal
extent, keywords in title, meta-data fields

◦ A catalog service could only implement these cataloguing requests, and could return an
external end-point for each layer.

◦ Option to automatically recurse within collections when retrieving list.

• GetLayerInfo: Returns basic information for a given layer:

◦ Title

◦ Geospatial data type

◦ Geospatial extent

◦ Scale / Resolution

◦ Temporal extent

◦ Supported tiling schemes and coordinate reference systems

◦ End-point (if external e.g. for catalog services)
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• GetMetaData

◦ Returns detailed meta-data information for a given layer standardized according to
ISO:19115

Retrieving Data

• GetFeatures

◦ Returns feature data as a single map – akin to WMS and WFS (whether raster, vector,
coverage)

◦ Server can support server-side rendering by requesting an image output format.

◦ Custom styles can be specified to override defaults

◦ Possibility to combine multiple layers.

◦ Parameters specific to GetFeatures: crs, extent

◦ Parameters shared with GetTile: layer, layers = [], feature, filter, query, format, size (raster),
styles

• GetTile

◦ Return a tile for one or more features – akin to WMTS (whether raster, vector, coverage), but
optionally support server-side rendering like WMS

◦ Server can support server-side rendering of tiles by requesting image format

◦ Styles can be specified to override defaults

◦ A single feature more likely cached by server

◦ Parameters specific to GetTile: tilingScheme (implies a crs), key: level, lat, lon, time

• GetValue

◦ Return a value for a single geospatial position

◦ Mainly intended for coverages, but return pixel value or featureID for vector layers

◦ Sharing crs parameter with GetFeatures

Tiling Schemes

• GetTilingScheme: Describe the properties of a given tiling scheme

◦ Coordinate reference system

◦ Size of each tiles

◦ Number of tiles across

◦ Descriptions similar to WMTS TilingMatrix (perhaps simpler)

◦ Support for variable width of rows (e.g. less tiles at the pole)

Attributes

• GetAttributesList

◦ Return the list of attributes for a given layer
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• GetAttributes

◦ Return the attribute values for specified feature(s) ID(s)

Styles for client-side rendering

• GetStyles

◦ Return the default styles associated with one or more layers

7.6.6. Future capabilities to be considered

The following capabilities should be considered for future development:

• Eventual support for complex filtering and queries

• Transactions for Creating, Updating and Deleting feature entries

• Geo-processing

7.7. Styling and SLD/SE
The following points present the key findings of an investigation on how to incorporate the best
practice use of OGC SE/SLD in vector tiling.

Support to import and apply SLD/SE styling (from the proposed WFS service) has been
implemented in the GNOSIS client. Some aspects of matching SLD/SE to the GNOSIS styling engine
still remain to be improved. SLD was originally conceived for server-based rendering by WMS
server, as implemented in GeoServer, the different ways in which SLD can represent various styling
options (e.g. CssParameter, SVGParameter, VendorOption) is not ideal if one is looking for a
standard and concise way of representing styles. Whereas SLD/SE will repeat the same layers to
achieve some rendering effects, fast rendering might be easier to optimize if for example a single
layer specifies label made up of multiple objects (e.g. an image and some text). Some of the
approaches defined in the SLD standard makes it difficult to express complex styling scenarios,
when overlapping rules would be beneficial (CR 519 [http://ogc.standardstracker.org/show_request.cgi?

id=519]) GNOSIS style sheets support rules priorities that were proven to be very useful in properly
and succinctly styling the Circular Thermokarst Landscapes maps for the Arctic Spatial Data
Platform [http://www.opengeospatial.org/pub/ArcticSDP/index.html] pilot project.
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Figure 4. Dominant or co-dominant thermokarst landscapes within the northern boreal and tundra
circumpolar permafrost region [12]

Figure 5. Styled with GNOSIS CMSS relying on rules override priorities

Perhaps a special attribute or tag could be used to indicate whether a style is being overridden or a
feature is to be rendered again. With this overriding mechanism, rather than an <ElseFilter> one
could also simply have a first Rule without any Filter. For example, assuming this overriding
capability, the proper styling for this Thermokarst map could be described using the following
(assuming that the later rules simply override the earlier rules):
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   <Rule><Filter>TKWP = Low                                </Filter><Fill>
#a1ff74</Fill></Rule>
   <Rule><Filter>TKThLP = Low                              </Filter><Fill>
#74b2ff</Fill></Rule>
   <Rule><Filter>TKHP = Low                                </Filter><Fill>
#fd846d</Fill></Rule>
   <Rule><Filter>TKWP = Low AND TKHP = Low                 </Filter><Fill>
#f7ff7c</Fill></Rule>
   <Rule><Filter>TKWP = Low AND TKThLP = Low               </Filter><Fill>
#beffe9</Fill></Rule>
   <Rule><Filter>TKWP = Low AND TKThLP = Low AND TKHP = Low</Filter><Fill>
#9d9d9d</Fill></Rule>
   <Rule><Filter>TKWP = Moderate                           </Filter><Fill>
#4de600</Fill></Rule>
   <Rule><Filter>TKThLP = Moderate                         </Filter><Fill>
#0070ff</Fill></Rule>
   <Rule><Filter>TKHP = Moderate                           </Filter><Fill>
#fe0001</Fill></Rule>
   <Rule><Filter>TKWP = Moderate AND TKHP = Moderate       </Filter><Fill>
#eae600</Fill></Rule>
   <Rule><Filter>TKThLP = Moderate AND TKHP = Moderate     </Filter><Fill>
#ff00c4</Fill></Rule>
   <Rule><Filter>TKWP = Moderate AND TKThLP = Moderate     </Filter><Fill>
#00e7a9</Fill></Rule>
   <Rule><Filter>TKWP = High                               </Filter><Fill>
#39a60d</Fill></Rule>
   <Rule><Filter>TKThLP = High                             </Filter><Fill>
#014da9</Fill></Rule>
   <Rule><Filter>TKHP = High                               </Filter><Fill>
#9a0602</Fill></Rule>
   <Rule><Filter>TKWP = High AND TKThLP = High             </Filter><Fill>
#00a882</Fill></Rule>
   <Rule><Filter>TKWP = Very High                          </Filter><Fill>
#334d27</Fill></Rule>
   <Rule><Filter>TKThLP = Very High                        </Filter><Fill>
#002674</Fill></Rule>
   <Rule><Filter>TKWP = Very High AND TKThLP = Very High   </Filter><Fill>
#007f7e</Fill></Rule>

(The above example does not show a complete SE for brevity).

There are already a number of existing maps styling formats, with various advantages and
disadvantages:

• OpenStreetMap [http://openstreetmap.org]'s MapCSS [http://wiki.openstreetmap.org/wiki/MapCSS]

• MapBox CSS [https://www.mapbox.com/base/styling/]

• QGIS QML

• Esri LYR
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Because styling capabilities and approaches tend to vary between different systems, it is a difficult
challenge to have a clean and elegant solution that fits every need.

7.7.1. GNOSIS Cascading Maps Style Sheets

An expressive compact styling language is being
developed by Ecere for GNOSIS,
with support for cascading styles sheets and
styling rules priorities.

The syntax is inspired mainly from eC/ECON,
CSS and MapCSS.

An early prototype example of what it might end
up looking like follows.

It takes significantly more contents to describe
equivalent styling with SLD/SE.

The following compares the expression of the same styles:

• in SLD/SE:

<Rule>
 <Name>Road Case</Name>
  <ogc:Filter>
   <ogc:Or>
    <ogc:PropertyIsEqualTo>
       <ogc:PropertyName>FEATCODE</ogc:PropertyName><ogc:Literal>
15750</ogc:Literal>
    </ogc:PropertyIsEqualTo>
    <ogc:PropertyIsEqualTo>
       <ogc:PropertyName>FEATCODE</ogc:PropertyName><ogc:Literal>
15759</ogc:Literal>
    </ogc:PropertyIsEqualTo>
    <ogc:PropertyIsEqualTo>
       <ogc:PropertyName>FEATCODE</ogc:PropertyName><ogc:Literal>
15743</ogc:Literal>
    </ogc:PropertyIsEqualTo>
    <ogc:PropertyIsEqualTo>
       <ogc:PropertyName>FEATCODE</ogc:PropertyName><ogc:Literal>
15749</ogc:Literal>
    </ogc:PropertyIsEqualTo>
    <ogc:PropertyIsEqualTo>
       <ogc:PropertyName>FEATCODE</ogc:PropertyName><ogc:Literal>
15729</ogc:Literal>
    </ogc:PropertyIsEqualTo>
    <ogc:PropertyIsEqualTo>
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       <ogc:PropertyName>FEATCODE</ogc:PropertyName><ogc:Literal>
15739</ogc:Literal>
    </ogc:PropertyIsEqualTo>
    <ogc:PropertyIsEqualTo>
       <ogc:PropertyName>FEATCODE</ogc:PropertyName><ogc:Literal>
15723</ogc:Literal>
    </ogc:PropertyIsEqualTo>
    <ogc:PropertyIsEqualTo>
       <ogc:PropertyName>FEATCODE</ogc:PropertyName><ogc:Literal>
15735</ogc:Literal>
    </ogc:PropertyIsEqualTo>
    <ogc:PropertyIsEqualTo>
       <ogc:PropertyName>FEATCODE</ogc:PropertyName><ogc:Literal>
15710</ogc:Literal>
    </ogc:PropertyIsEqualTo>
    <ogc:PropertyIsEqualTo>
       <ogc:PropertyName>FEATCODE</ogc:PropertyName><ogc:Literal>
15719</ogc:Literal>
    </ogc:PropertyIsEqualTo>
   </ogc:Or>
  </ogc:Filter>
 <MinScaleDenominator>1000</MinScaleDenominator>
 <MaxScaleDenominator>15000</MaxScaleDenominator>
 <LineSymbolizer uom="http://www.opengeospatial.org/se/units/metre">
   <Stroke>
     <CssParameter name="stroke">#505050</CssParameter>
     <CssParameter name="stroke-width">17</CssParameter>
     <CssParameter name="stroke-linecap">butt</CssParameter>
     <CssParameter name="stroke-linejoin">round</CssParameter>
   </Stroke>
 </LineSymbolizer>
</Rule>

• and in GCMSS:

#Roads
{
   [scale>=1000][scale<=15000]
   [FEATCODE in (15710,15719,15723,15729,15735,15739,15743,15749,15750,15759)]
   {
      line = { width = Meters { 17 }, color = 0xff505050, cap = butt, join = round
}
   }
}

The following example demonstrates cascading rules for additional criteria:
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   #NamedPlace[scale>=20000] { visible = false }
   #Wooodland { zOrder = 1, lineWidth = 0 }
   #Road { zOrder = 10, label = { [ Text { "DISTNAME", font = { "Tahoma", 8 },
oulineSize = 4 } } ] } }
   #Foreshore
   {
      zOrder = 2, lineWidth = 0
      [FEATCODE=15612] { fillColor = 0xffeeefea }
   }
   #Building
   {
      zOrder = 3, lineWidth = 0
      [FEATCODE=14014] { fillColor = 0xfff9e4c4 }
   }
   #ElectricityTransmissionLine
   {
      zOrder = 4, lineWidth = 1
      [FEATCODE=15102]
      {
         lineColor = 0xffced3c7
         [scale< 10000] { lineWidth = 1 }
         [scale>=10000] { lineWidth = 0.5 }
      }
   }
   #ImportantBuilding
   {
      zOrder = 5
      [scale>=1000][FEATCODE in
(15018,15019,15020,15021,15022,15023,15024,15025,15026,15027,15028)]
      {
         lineWidth = 1, fillColor = 0xfff2e6d4, lineColor = 0xff8f887f
      }
   }
   #RailwayStation
   {
      zOrder = 6
      [FEATCODE=15420]
      {
         label = { [
            Image { "ordnance_survey/LRT-bd.png", alignment = { middle, center } },
            Text
            {
               "DISTNAME", font = { "Arial", 14 }, alignment = { middle, left },
offset = { 14, -2 },
               color = 0xff737373, outlineColor = white
            }
         ] }
      }
   }
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7.8. GNOSIS vector features processing
Although the Vector Map Tiling Service is capable of tiling on-the-fly, GNOSIS works off pre-tiled
data. Producing the compact tiles required by the service, suited for both visualization of analysis,
is achieved through a multi-step pipeline. The steps are typically performed offline as pre-
processing, and include:

• Deprojection

• Topology error identification and correction

• Recombining features from source data (e.g. tiled or split-up in a different way)

• Generalization (Unlike the common Douglas–Peucker [https://en.wikipedia.org/wiki/

Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm] algorithm, the GNOSIS [http://ecere.ca/gnosis]
generalization algorithm preserves overall shapes and correct topology (avoids self-intersections
and overlaps))

• Tiling

• Tessellation (Constrained Delaunay Triangulation)

A large majority of the efforts throughout the testbed have been spent designing, implementing,
validating and perfecting the solutions to the complex problems associated with this entire
pipeline, with a particular focus on the more involved polygon features.

7.9. Tiled data sets produced

7.9.1. Natural Earth tiled data sets

Natural Earth data was used as the initial testing data set because it provides global coverage of a
large number of useful features at 1:10,000,00 scale. Some of the vector layers from Natural Earth
[http://naturalearthdata.com/] for which tiled data sets were produced:
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Figure 6. Natural Earth vector layers

Some resulting tile sets have been made available as sample GNOSIS data store layers:  Countries
[http://maps.ecere.com/downloads/gnosis-ne_10m_admin_0_countries.zip] (polygons)  Coastlines
[http://maps.ecere.com/downloads/gnosis-ne_10m_coastline.zip] (lines)  Rivers [http://maps.ecere.com/

downloads/gnosis-ne_10m_rivers_lake_centerlines.zip] (lines)  Elevation points [http://maps.ecere.com/

downloads/gnosis-ne_10m_geography_regions_elevation_points.zip] (points):

The complete set of vector layers is accessible from the WFS at
http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetCapabilities
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Figure 7. Styled Natural Earth tileset displayed on 3D globe at various zoom levels (image a)

Figure 8. Styled Natural Earth tileset displayed on 3D globe at various zoom levels (image b)
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Figure 9. Styled Natural Earth tileset displayed on 3D globe at various zoom levels (image c)

Figure 10. Styled Natural Earth tileset displayed on 3D globe at various zoom levels (image d)
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Figure 11. Styled Natural Earth tileset displayed in Wagner VI projection

Figure 12. Styled Natural Earth tileset displayed unprojected
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Figure 13. Styled Natural Earth tileset displayed in Mercator projection

Figure 14. Styled Natural Earth tileset displayed in Lambert Azimuthal projection

7.9.2. Ordnance Survey OpenData tiled data sets

The OpenMap Local product from Ordnance Survey ( Ordnance Survey OpenData
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[https://www.ordnancesurvey.co.uk/opendatadownload/products.html] ) was tiled and served by the GNOSIS
Map Server WFS. Ordnance Survey also provide SLD style sheets that were used to style while
visualizing the maps in the GNOSIS client. Those style sheets are also served together with the
features for the client to use, e.g. http://maps.ecere.com/wfs?SERVICE=WFS&REQUEST=GetStyles&
TYPENAMES=Road .

All layers from OpenMap Local were processed:

Layer Feature type Shapefile size GNOSIS tileset size

Building
[http://maps.ecere.com/wfs?
SERVICE=WFS&
REQUEST=GetFeature&
TYPENAMES=Building&
SRSNAME=EPSG:4326&
hiddenSegments=1]

polygons 2.79 gb 1.57 gb

CarChargingPoint
[http://maps.ecere.com/wfs?
SERVICE=WFS&
REQUEST=GetFeature&
TYPENAMES=CarChargingP
oint&
SRSNAME=EPSG:4326&
hiddenSegments=1]

points 319 kb 1.14 mb

ElectricityTransmission
Line
[http://maps.ecere.com/wfs?
SERVICE=WFS&
REQUEST=GetFeature&
TYPENAMES=ElectricityTra
nsmissionLine&
SRSNAME=EPSG:4326&
hiddenSegments=1]

lines 7.54 mb 17.7 mb

Foreshore
[http://maps.ecere.com/wfs?
SERVICE=WFS&
REQUEST=GetFeature&
TYPENAMES=Foreshore&
SRSNAME=EPSG:4326&
hiddenSegments=1]

polygons 105 mb 151 mb

FunctionalSite
[http://maps.ecere.com/wfs?
SERVICE=WFS&
REQUEST=GetFeature&
TYPENAMES=FunctionalSit
e&SRSNAME=EPSG:4326&
hiddenSegments=1]

polygons 31.5 mb 53.6 mb
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Layer Feature type Shapefile size GNOSIS tileset size

Glasshouse
[http://maps.ecere.com/wfs?
SERVICE=WFS&
REQUEST=GetFeature&
TYPENAMES=Glasshouse&
SRSNAME=EPSG:4326&
hiddenSegments=1]

polygons 246 kb 722 kb

ImportantBuilding
[http://maps.ecere.com/wfs?
SERVICE=WFS&
REQUEST=GetFeature&
TYPENAMES=ImportantBuil
ding&
SRSNAME=EPSG:4326&
hiddenSegments=1]

polygons 113 mb 78.3 mb

MotorwayJunction
[http://maps.ecere.com/wfs?
SERVICE=WFS&
REQUEST=GetFeature&
TYPENAMES=MotorwayJun
ction&
SRSNAME=EPSG:4326&
hiddenSegments=1]

points 39.1 kb 439 kb

NamedPlace
[http://maps.ecere.com/wfs?
SERVICE=WFS&
REQUEST=GetFeature&
TYPENAMES=NamedPlace&
SRSNAME=EPSG:4326&
hiddenSegments=1]

points 130 mb 160 mb

RailwayStation
[http://maps.ecere.com/wfs?
SERVICE=WFS&
REQUEST=GetFeature&
TYPENAMES=RailwayStatio
n&SRSNAME=EPSG:4326&
hiddenSegments=1]

lines 886 kb 2.07 mb

RailwayTrack
[http://maps.ecere.com/wfs?
SERVICE=WFS&
REQUEST=GetFeature&
TYPENAMES=RailwayTrack
&SRSNAME=EPSG:4326&
hiddenSegments=1]

lines 20.4 mb 18.6 mb

RailwayTunnel
[http://maps.ecere.com/wfs?
SERVICE=WFS&
REQUEST=GetFeature&
TYPENAMES=RailwayTunn
el&SRSNAME=EPSG:4326&
hiddenSegments=1]

lines 166 kb 797 kb
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Layer Feature type Shapefile size GNOSIS tileset size

Road
[http://maps.ecere.com/wfs?
SERVICE=WFS&
REQUEST=GetFeature&
TYPENAMES=Road&
SRSNAME=EPSG:4326&
hiddenSegments=1]

lines 1.04 gb 587 mb

RoadTunnel
[http://maps.ecere.com/wfs?
SERVICE=WFS&
REQUEST=GetFeature&
TYPENAMES=RoadTunnel&
SRSNAME=EPSG:4326&
hiddenSegments=1]

lines 138 kb 272 kb

Roundabout
[http://maps.ecere.com/wfs?
SERVICE=WFS&
REQUEST=GetFeature&
TYPENAMES=Roundabout&
SRSNAME=EPSG:4326&
hiddenSegments=1]

points 763 kb 3.06 mb

SurfaceWater_Area
[http://maps.ecere.com/wfs?
SERVICE=WFS&
REQUEST=GetFeature&
TYPENAMES=SurfaceWater
_Area&
SRSNAME=EPSG:4326&
hiddenSegments=1]

polygons 702 mb 797 mb

SurfaceWater_Line
[http://maps.ecere.com/wfs?
SERVICE=WFS&
REQUEST=GetFeature&
TYPENAMES=SurfaceWater
_Line&
SRSNAME=EPSG:4326&
hiddenSegments=1]

lines 406 mb 479 mb

TidalBoundary
[http://maps.ecere.com/wfs?
SERVICE=WFS&
REQUEST=GetFeature&
TYPENAMES=TidalBoundar
y&SRSNAME=EPSG:4326&
hiddenSegments=1]

polygons 116 mb 104 mb

TidalWater
[http://maps.ecere.com/wfs?
SERVICE=WFS&
REQUEST=GetFeature&
TYPENAMES=TidalWater&
SRSNAME=EPSG:4326&
hiddenSegments=1]

polygons 73.3 mb 203 mb
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Layer Feature type Shapefile size GNOSIS tileset size

Woodland
[http://maps.ecere.com/wfs?
SERVICE=WFS&
REQUEST=GetFeature&
TYPENAMES=Woodland&
SRSNAME=EPSG:4326&
hiddenSegments=1]

polygons 1.41 gb 1.66 gb

Total size 6.92 gb 5.83 gb

Figure 15. Ordnance Survey OpenMap Local tileset displayed in GNOSIS Cartographer (image a)
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Figure 16. Ordnance Survey OpenMap Local tileset displayed in GNOSIS Cartographer (image b)

Figure 17. Ordnance Survey OpenMap Local tileset displayed in GNOSIS Cartographer (image c)
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Figure 18. Ordnance Survey OpenMap Local tileset displayed in GNOSIS Cartographer (image d)

Figure 19. Ordnance Survey OpenMap Local tileset displayed in GNOSIS Cartographer (image e)
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Figure 20. Ordnance Survey OpenMap Local tileset displayed in GNOSIS Cartographer (image f)

Figure 21. Ordnance Survey OpenMap Local tileset displayed in GNOSIS Cartographer (image g)
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Figure 22. Ordnance Survey OpenMap Local tileset displayed in GNOSIS Cartographer (image h)

Figure 23. Ordnance Survey OpenMap Local tileset displayed in GNOSIS Cartographer (image i)
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Figure 24. Ordnance Survey OpenMap Local tileset displayed in GNOSIS Cartographer (image j)

Figure 25. Ordnance Survey OpenMap Local tileset displayed in GNOSIS Cartographer (image k)
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Figure 26. Ordnance Survey OpenMap Local tileset displayed in GNOSIS Cartographer (image l)

Figure 27. Ordnance Survey OpenMap Local tileset displayed in GNOSIS Cartographer (image m)
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Figure 28. Ordnance Survey OpenMap Local tileset displayed in GNOSIS Cartographer (image n)

Figure 29. Ordnance Survey OpenMap Local tileset displayed in QGIS (image a)
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Figure 30. Ordnance Survey OpenMap Local tileset displayed in QGIS (image b)

Figure 31. Ordnance Survey OpenMap Local tileset displayed in QGIS (image c)
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Figure 32. Ordnance Survey OpenMap Local tileset displayed in QGIS (image d)

Figure 33. Ordnance Survey OpenMap Local tileset displayed in QGIS (image e)
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Figure 34. Ordnance Survey OpenMap Local tileset displayed in QGIS (image f)

Figure 35. Ordnance Survey OpenMap Local tileset displayed in QGIS (image g)
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Figure 36. Ordnance Survey OpenMap Local tileset displayed in QGIS (image h)

7.10. Data formats comparison
Sample single tile for states multipolygon features

Figure 37. Data size for sample vector tile representing states

If we only consider the geometry, without attributes, a sample tile for the Natural Earth States &
Provinces multipolygon feature used up 744 kilobytes described in GML, compressing to 123
kilobytes with the Deflate algorithm, while it only took 49 kilobytes in the GNOSIS vector tile
representation, despite the additional tile border flags and Delaunay tesselation.

Entire feature for states multipolygon features

73



Figure 38. Data size for entire states feature

For the geometry of the entire feature, it took 20.6 megabytes as a shapefile, while it only took 13.3
megabytes in the GNOSIS map tile representation, despite the overhead of all the additional
generalized levels.

NOTE

Formats marked GPU ready are pre-triangulated using Constrained Delaunay
Triangulation, defined as vertices and indices, using 16-bit integers for both vertices
and indices. These formats are stored in binary form and ready to load into vertex
or index buffer objects on mobile through OpenGL ES or the web through WebGL as
soon as the data is retrieved. Any of the directories format compared above could
alternatively use the same SQLite attributes & geospatial indexing database as the
standard GNOSIS data store tile pyramids format. The attribs.econ was simply
implemented as a quick convenient solution for the Tiles API. For zip compression,
7-zip was used with settings: Ultra, Deflate, Dictionary size: 32 kb, Word size 128 For
7z compression, 7-zip was used with settings: Ultra, LZMA, Dictionary size: 64 MB,
Word size 64, Solid block size: 4 GB Size on disk was measured with NTFS
Directories formats marked with partial spatial index have attributes data, record
extents and area/lengths (except for Shapefiles) available stored separately from
tiles and related together, but the R-tree must still be created

7.10.1. Natural Earth - Worldwide States & Provinces Feature (1:10,000,000)

The following table presents a comparison of different formats.

Table 8. Format comparison: Entire feature, EPSG:4326 / WGS-84, GNOSIS tiling scheme (Zoom Levels 0 - 5)

Format Tiled Spatial
Index

GPU
ready

Attribut
es
Locatio
n

Number
of files

Size in
kilobyte
s

Size on
disk

zip size 7z size

Esri
Shapefil
e

No Partial
(shx)

No dBASE
DBF

5 (shp,
shx, dbf,
prj, cpg)

36,052 36,080
overhea
d: 28 kb,
0.07%

13,925 8,768
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Format Tiled Spatial
Index

GPU
ready

Attribut
es
Locatio
n

Number
of files

Size in
kilobyte
s

Size on
disk

zip size 7z size

GML
directori
es
(written
by
GNOSIS
+ ECON
layerInf
o and
list of
fields)

Yes No No Repeate
d inside
each
GML tile

3544 157,762 164,816
overhea
d: 7,054
kb,
4.47%

33,597 15,213

GeoECO
N
directori
es +
ECON
layerInf
o and
attribute
s

Yes Partial No attribs.e
con

3544 104,604 112,056
overhea
d: 7,452
kb,
7.12%

25,757 14,679

GNOSIS
Compac
t
Feature
s
directori
es +
ECON
layerInf
o and
attribute
s

Yes Partial Yes attribs.e
con

3544 18,397 27,108
overhea
d: 8,711
kb,
47.35%

14,915 14,189

GNOSIS
Compac
t
Feature
s
(pyramid
al store
+ SQLite
db)

Yes Yes Yes attribute
s.sqlite

10 16,581 16,604
overhea
d: 23 kb,
0.14%

14,443 13,984

7.10.2. Observations

Text-based formats are very inconvenient for storage and transmission as they take up way too
much disk space (154 mb for GML; 102 mb for GeoECON). They do benefit from a high compression
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ratio (although XML tags in particular compress very well); however for data generated on-the-fly,
the compression processing is unnecessary load. Text files are difficult and much less efficient to
parse for computer software, and not practically editable by humans given the size of typical
geospatial data. Their advantages over binary formats for representing geospatial data are
restricted to being easier to extend and maintain compatibility/inter-operability and making
debugging & experimentation easier (and therefore facilitate implementation). These advantages
are significant, but they do not justify their use in production environments where the best user
experience or performance is desired. GeoECON and separate relational attributes can offer a
significant size reduction (~33%) compared to the GML approach, if a text-based format is desired.
Esri Shapefiles are of a reasonable size being binary, but are not compressed and not tiled. The
large number of files resulting from multi-resolution tiling (3544 in the sample tile set) justifies a
mitigation approach such as the one implemented in the GNOSIS data store. This overhead becomes
more relatively significant when using binary formats as can be seen in the overhead for GNOSIS
Compact Features standing out at 47.35%. The GNOSIS Compact Vector Tiles format takes a very
reasonable amount of space once compressed. The standard GNOSIS data store (with internal lzma
compression) takes only 16,581 kb (this is 54% less than the original shapefile).

This performance is remarkable considering all of its advantages:

• It implements multi-resolution tiling (typically incurring roughly 33% overhead for lower
resolution levels)

• It is ready for high-performance GPU rendering

• It is optimally pre-triangulated and ensured to be topologically correct

• It is ready for geospatial lookups, partial queries and analysis with spatial indexing

Because each tile are individually compressed for rapid access, some compressibility potential is
lost. Compressing a large block of data will reach much higher compression ratio than small blocks.
Previous experiments had shown the entire feature taking up 11,823 kb when compressing the
entire set of uncompressed tiles as a whole with LZMA. Pre-processing of the vector data could
improve its compressibility. The GNOSIS Map Tile format currently supports deflate and lzma
compression for vector data, while PNG compression is supported for imagery and coverage data.
The GNOSIS Compact Vector Tiles format is very well suited for implementing data stores,
transmission, offline data exchange of all geospatial data types, visualization and analysis.

7.11. Integration of Vector Map Tiling Service (GNOSIS
Map Server) with other components
This section presents examples of a Vector Map Tiling Service integrated with other components.

7.11.1. Ecere [http://ecere.ca]'s GNOSIS [http://ecere.ca/gnosis] Software
Development Kit & GNOSIS Cartographer (client)

The following are screenshots of the GNOSIS Cartographer application.

The following screenshot shows vector features served from the GNOSIS Map Server WFS shown in
a top-down 3D perspective projection.
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Figure 39. Vector features served from the GNOSIS Map Server WFS shown in a top-down 3D perspective
projection

The following screenshot shows vector features served from the GNOSIS Map Server WFS shown in
a 3D perspective view, with the camera looking towards the horizon.

Figure 40. Vector features served from the GNOSIS Map Server WFS shown in a 3D perspective view, with
the camera looking towards the horizon

The following screenshot shows vector features served from the GNOSIS Map Server WFS shown in
a Wagner VI cartographic projection, showing the entire world.
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Figure 41. Vector features served from the GNOSIS Map Server WFS shown in a Wagner VI cartographic
projection, showing the entire world

The next section presents the QGIS client.

7.11.2. QGIS (client)

The default release of QGIS can readily visualize feature data provided by the extended tiling WFS
service endpoint. A default zoom level was assumed based on the extent requested, and tiles were
selected based on the BBOX parameter.

Figure 42. QGIS visualizing WFS
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NOTE

A couple caveats about the version of QGIS that was tried:

• The view must be refreshed (F5) after panning or zooming to get the proper
resolution and/or to clear out incomplete shapes. This is likely due to the of the
tiling WFS returning features cleanly cut at the BBOX edges.

• Sometimes QGIS decided to flip out the geometry 90° after some
confusion — this may have been resolved by fully qualifying the coordinate
reference system with the 'urn:ogc:def:crs:' prefix, which allowed for ordering
EPSG:4326 coordinates as latitude, longitude.

7.11.3. GMU’s QGIS vector tiles plug-in (client)

GMU were able to access the GNOSIS Map Server’s WFS Service, making use of the zoom level
extension to query vector data with the appropriate level of detail.

Figure 43. GMU QGIS Vector Tiling plug-in visualizing data served from the GNOSIS WFS, explicitly
requesting zoom level

7.11.4. HEIG-VD’s generalization & tiling approach feeding GNOSIS Map
Server data store (tile sets)

A Python API to manipulate GNOSIS data stores was provided to HEIG-VD so that they could output
the results of their own generalization and tiling algorithms. This was done in order to produce tile
sets that could be served from the GNOSIS Map Server.

7.12. Conclusions
The main take away from the VectorTiles work package is that WFS needs a 'zoomLevel' extension
(CR 514 [http://ogc.standardstracker.org/show_request.cgi?id=514]). The testbed has also found that
representation of tiled areas requires a way to indicate artificial edges, e.g. in GML (CR 515
[http://ogc.standardstracker.org/show_request.cgi?id=515]).

Extensions were proposed to easily add vector tiling capabilities to both existing WFS and WMTS
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(CR 517 [http://ogc.standardstracker.org/show_request.cgi?id=517]) clients and services. The adoption and
implementation of these extensions in additional client and services would be future work.

Additional extensions were proposed to both WFS (CR 516 [http://ogc.standardstracker.org/

show_request.cgi?id=516]) and WMTS (CR 518 [http://ogc.standardstracker.org/show_request.cgi?id=518]) to
improve usability. Some drawbacks of SLD/SE were identified (CR 519 [http://ogc.standardstracker.org/

show_request.cgi?id=519]) and the prototype for a more expressive styling format has been introduced,
the standardization of which could constitute future work. The need for a Unified Mapping Service
was demonstrated, for which principles were laid out and the implementation of a prototype has
begun. The development of a UMS (or something like UMS) is recommended for future work. (CR
524 [http://ogc.standardstracker.org/show_request.cgi?id=524])

New open standards are being proposed to efficiently cover:

• A tiling scheme for the entire globe in WGS-84, with special considerations for the
poles — suitable for cartographic and 3D projection. (Annex A) (CR 520
[http://ogc.standardstracker.org/show_request.cgi?id=520])

• A compact representation of vector tiles (Annex B) (CR 521 [http://ogc.standardstracker.org/

show_request.cgi?id=521])

• An alternative textual representation of geospatial vector data and attributes (Annex C) (CR 522
[http://ogc.standardstracker.org/show_request.cgi?id=522])

• A data store able to hold geospatial data of different types (gridded coverage, imagery, vector
data and its associated attributes with spatial indices) (Annex D) (CR 523
[http://ogc.standardstracker.org/show_request.cgi?id=523])

A multi-language API has been developed as a subset of the GNOSIS SDK API and can be provided to
testbed participants to facilitate operating with these standards (Annex E)
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Chapter 8. WFS for Vector Tiling

8.1. WFS for Vector Tiling

8.1.1. System Design and Implementation

WFS has been implemented by a couple of geospatial data server software in the last decade, such
as GeoServer, MapServer, ArcGIS Online and so on. Benefits from the performance improvement
the Vector Tiling (VT) technology brings, much of the software mentioned has made some practices
on VT data providing.

For the purpose of comparison, a WMTS vector tile service is also implemented for the purpose of
comparison.

In this implementation, GeoServer is employed as the basis for the WFS VT service. GeoServer is an
open source software server which is widely used. Basic functions are well developed in GeoServer,
including multiple data source management, OGC OWS support, user-friendly graphic interface
(GUI), OGC SLD support, etc. In this implementation OGC’s WFS 1.0.0, 1.1.0 and 2.0.0 specification
are all supported as the WFS VT data sharing standards. The fundamental operations of WFS
including "GetCapabilities", "DescribeFeatureType" and "GetFeature" are supported/extended to
adapt the VT data type.

In order to validate the implementation of this vector tile service, the ASU team has been working
with other collaborators including GMU. A local website based testbed is developed as well for the
purpose of validation.

The following tools and software were used for implementing the demonstration of VT in this
testbed:

• JDK 7.x or later

• GeoServer 2.11.0 or later

• OpenLayers v4.2.0 or later

The diagram in Figure 44 demonstrates the data processing pipeline for a Vector Tiling Service:
When a geospatial data set (shape file, PostGIS table etc.) is hosted on the Vector Tile Server, the
vector tile generator will create the vector tile files beforehand and preserve them in the local
vector tile cache component. An extended WFS service component is developed for wrapping and
publishing the vector tiles data through WFS standards, including "GetCapabilities",
"DescribeFeatureType" and "GetFeature" etc. When the vector tiles are delivered to the server side,
they could be rendered by a website testbed on basis of OpenLayers. Some additional optimization
strategies including attribute selection and compression is used for the purpose of low bandwidth
circumstance.
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Figure 44. Overall system architecture

8.1.2. Tile Attribution

Providing attribution of features is supported for all zoom levels. Selection of attribution is
supported as well.

8.1.3. Geometry & Tiling

All basic geometry types including polygon, line and points are supported by this vector tiling
server implementation. Supported exchange formats for vector tiling include pbf(MapBox’s vector
tiling specification format), GeoJSON, and zipped GeoJSON.

8.1.4. Low Bandwidth

Under some circumstance, such as natural disasters (earthquakes, storms, floods etc.) there is
limited or no bandwidth. In order to test vector tiles' performance for the low bandwidth situation,
some optimization strategies are adopted and tested in this implementation, including:

• Generalization: Douglas-Peucker algorithm was applied by default for different levels of vector
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tile data.

• Attribute selection: Multiple attributes of the features could be informative. However, not all
the attributes are necessary for all users. Also, using all attributes could increase the size of data
payload. Attribute selection could help users select only the attributes useful for them and limit
the data size at the same time.

• Data compression: Data compression techniques are widely adopted for network data
transmission, this strategies could be applied to vector tiles as well. Two binary/compressed
data formats were used in this testbed implementation: 1. pbf data; 2. g-zipped GeoJSON data.

8.2. WFS Get Feature Specification
To support access to tiled vector data via a WFS request/response, the original WFS standard was
extended. Table 10 lists the parameters for getting vector data.

Table 9. Parameters for Request Vector Tile Data

Parameter Required Options Description

(Domain) true http://cici.lab.asu.edu/
geoservervt/ows?

The host of this WFS
vector tile server

service true WFS must be WFS

version true 1.0.0, 1.1.0, 2.0.0

request true GetFeature Use 'GetCapabilities' or
'DescribeFeatureType'
to get other
information of the data

typeName true  —  The name of requested
layer

srs optional EPSG:4326,
EPSG:900913

Spatial reference of the
data

propertyName optional None Name of the attributes
for retrieval, if not
specified, all attributes
will be returned

outputFormat true application/vt-pbf,
application/vt-geojson,
application/vt-geojson-
zip

For the formats of .pbf,
GeoJSON and g-zipped
GeoJSON

vtId true None The id of vector tile for
retrieval, must follow
the rule of {z}/{x}/{y}

Get-Capabilities URL Example

http://cici.lab.asu.edu/geoservervt/ows?service=WFS&version=2.0.0&request=GetCapabilities

Describe-Feature-Type URL Example
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http://cici.lab.asu.edu/geoservervt/ows?service=WFS&version=2.0.0&request=DescribeFeatureType
&typeName=it.geosolutions%3Ane_10m_admin_0_countries

Get-Feature URL Example

http://cici.lab.asu.edu/geoservervt/ows?service=WFS&version=2.0.0&request=GetFeature&
typeName=it.geosolutions:ne_10m_admin_0_countries&srs=EPSG:4326&propertyName=the_geom&
outputFormat=application/vt-geojson&vtId=2/6/2

8.2.1. Tiling schemes

Standard OGC WMTS' tiling schemes for the srs of "EPSG:4326" and "EPSG:900913" are adopted for
the vector tiling service. The default tile size is 256×256 pixels

Figure 45. EPSG:4326 Tiling Scheme
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Figure 46. EPSG:900913 Tiling Scheme

8.2.2. NSG Profiling for Vector Tile WFS Service

NSG WFS Profile

The NSG WFS V2 Profile was developed by the US National Geospatial-Intelligence Agency (NGA).
The NSG profiles first restrict OGC Standard then add NSG specific extensions, mainly including:
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• DGIWG Web Feature Service 2.0 Profile (DGIWG-122)

• OGC Web Feature Service standard, Version 2.0.2 [OGC 09-025r2]

• OGC Filter Encoding standard, Version 2.0.2 [OGC 09-026r2]

and many others (see reference1 [https://nsgreg.nga.mil/doc/view?i=4283], reference2 [https://github.com/

opengeospatial/ets-wfs20-nsg], reference3 [https://nsgreg.nga.mil/doc/view?i=4388&month=10&day=30&

year=2017]).

The main intention of the NSG WFS profile is to promote interoperability between elements of
several U.S. departments including Intelligence Community (IC), Department of Defense (DoD),
NATO, and coalition partners by defining specific extends and restricts on top of current WFS
implementation standards.

In the NSG WFS Profile, the following operations are required:

• GetCapabilities

• GetPropertyValue

• GetFeature

• DescribeFeatureType

• ListStoredQueries

• DescribeStoredQueries

• LockFeature

• GetFeatureWithLock

• Transaction

• CreateStoredQuery

• DropStoredQuery

• PageResults

In each operation, some specific parameters are defined in order to retrieve certain data / trigger
certain actions on the server side.

Implement NSG WFS Profile on this Vector Tile WFS Server

This vector tile testbed was implemented on top of GeoServer [http://geoserver.org/]. Since GeoServer
is an open source server for sharing geospatial data, and the implementation of GeoServer is based
on a number of OGC open standards such as WFS, WMS and WCS.

The GeoServer developing community is very active. Numbers of modules and plugins are being
developed and made available in GeoServer. And the source codes, examples of GeoServer are well
documented. Since GeoServer is developed based on GeoTools [http://www.geotools.org/], which means
the functions from GeoTools can be easily integrated into GeoServer. All these preconditions make
it very easy and convenient for a third party to develop new functionalities / modules in GeoServer.

As was pointed out before: 1. This WFS server is built on top of GeoServer; 2. GeoServer implements
the standard OGC WFS versions; 3. It is easy and convenient to modify GeoServer’s modules and
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develop new Modules on GeoServer. and 4. The NSG WFS Profile is also defined based on OGC’s
WFS 2.0 standard etc. These preconditions guarantee that this vector tile WFS server can be made
to satisfy the NSG WFS profile through minor modification of the WFS operation definitions.

Test against the NSG WFS Profile & Discussions

There are two ways for testing the Vector Tile WFS against the NSG WFS Profile with extensions,
one is using OGC’s TEAM Engine test tool [https://github.com/opengeospatial/teamengine] together with
the NSG WFS v2 Profile test suit configuration [https://github.com/opengeospatial/ets-wfs20-nsg]. Another
way is directly running the test on OGC’s official test harness website (the beta version)
[http://cite.opengeospatial.org/te2/].

Currently, for the first method, the project could not be built by Maven correctly (Project address:
https://github.com/opengeospatial/ets-wfs20-nsg Latest project access time: Oct/30/2017). Hence, the
test was run directly on the Web Page. According to the testing result, the basic operations
including GetCapabilities, GetPropertyValue, and GetFeature operations are supported.

The main advantage of Vector Tile reflects on its capability of rapid feature data transmission and
visualization. Although there are many implementations of the vector tile by individual companies
and open source software, no unified or widely accepted standards for Vector Tile exists. This is one
of the main objectives of this OGC’s S3D vector tile activity: to implement vector tile through
different approaches (WMTS/WFS) and test them from different perspectives (different data types,
different spatial reference systems, different output formats etc.). This information can be used in
discussions as to the advantages and disadvantages of these different approaches in detail, which
could help developing the OGC vector tile standard or best practice in future.

In order to implement the vector tile technology through WFS, the conventional WFS standard has
to be extended and some addition parameters must be added (see Table 1. parameters for request
vector tile data). Consequently, these standards are not included in current NSG WFS Profile test
suit or OGC WFS 2.0 test suit.

On the other hand, for the visualization case, vector tiles need to be transmitted and presented
rapidly and elegantly. In order to fulfill this requirement, strategies like generalization, clipping and
attribute filtering are deployed and integrated into the data processing pipeline by default, which
make the vector tile data unsuitable for spatial analysis/statistics on the client side since the
accuracy cannot always be guaranteed. Vector tiling for the visualization use case is not suitable for
editing the data on client side either. Meanwhile, since the vector data are organized in the form of
pyramid, if a feature is changed/ at one zoom level, how to make sure the change can affect other
zoom levels accordingly and keep the data consistent could be another research topic to address.
Hence, in order to fulfill the operations in NSG WFS Profile such as LockFeature,
CreateStoredQuery, DropStoredQuery etc, more efforts need to be devoted in future.

8.2.3. Hosting different datasets

A series of data layers with distinct characteristics were used to test the ability of the developed
WFS vector tiling server to handle different types of feature data. The datasets provided by HEIG-
VD, include:

1. Simple Point data: Northumberland Road Nodes
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2. Multipoint data: Large cities in the world

3. Line data: Northumberland Road Links

4. Multiline data: Swiss roads (which is very unbalanced)

5. Polygon/Multipolygons data: district_borough_unitary_region

6. Line data with arc shapes data: OSOpenRoads_TM_with_arcs (Most roundabouts are composed
of arcs)

All these datasets were hosted on the developed WFS Vector Tile server. Some local data are re-
projected into EPSG:4326 (WGS84) reference system in order to be presented in testbed clients. All
these data layers could also be correctly processed on the server side and visualized on the client
side.

8.2.4. Support GeoPackage export format

GeoPackage is an open, standards-based, platform-independent, portable, self-describing, compact
format developed by OGC for transferring geospatial information. A GeoPackage is a SQLite
container and the GeoPackage Encoding Standard governs the rules and requirements of content
stored in a GeoPackage container. Currently, GeoPackage supports vector features, tile matrix sets
of imagery and raster maps at various scales, attributes (non-spatial data) and Extensions including
Tiled Gridded Coverages. (For the details of GeoPackage, see here [http://www.geopackage.org/])

In the implemented vector tiling server, GeoPackage is supported as one of the output formats. The
GeoPackage data processing is directly embedded into the WFS data processing pipeline: the Vector
Tile service is implemented based on the GeoServer’s WFS component. In order to support the
GeoPackage format, the GeoTools' GeoPackage Plugin [http://docs.geotools.org/latest/userguide/library/data/

geopackage.html] was employed and integrated into the WFS vector tiling server.

On the client side (webpage testbed), A JavaScript library named ngageoint geopackage-js
[https://github.com/ngageoint/geopackage-js] is employed for reading and parsing the GeoPackage files.
This library is developed by National Geospatial-Intelligence Agency (NGA) initialized from a
former OGC project.

8.3. Integration experiments
A technology integration experiment was performed to test interoperability of the developed vector
tiling services (WFS and WMTS) with the other components implemented during this testbed as
listed in Table 6 - Vector Tiling Components (Chapter 5).

8.3.1. Server portal

http://cici.lab.asu.edu/geoservervt/ows?service=wfs&version=2.0.0&request=GetCapabilities
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Figure 47. Vector Tile WFS Server Portal

8.3.2. Testbed client side

http://cici.lab.asu.edu/gci2beta/

For using the testbed on client side, registration is required or use the temporary user role.

Figure 48. Testbed entrance
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Figure 49. Testbed panel

Figure 50. Data rendering result
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Figure 51. Additional datasets hosted on this WFS Vector Tile Server

8.3.3. Main conclusions and experiences from the experiments

The main conclusions and experiences from the experiments are as follows:

• Data type support: In the experiments, different types of feature data including point,
multipoint, line, multiline, polygon, multipolygon, layers with arcs and unbalanced data
layer(features distribute not evenly, but densely in some regions and sparsely in other regions)
was well supported by the server and client.

• Spatial reference systems support: EPSG:4326 and EPSG:900913 were supported by default for
the vector tile schemes. The server also supports customized vector tile schemes.
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• Experiments for low bandwidth strategies: Three data simplification strategies are integrated
into this testbed, i.e. geometry generalization, attribute filtering and data compressing. After
using these strategies, significant data size reduction can be achieved. According to the
experiment results (see Figure 50):

1. geometry generalization is very suitable for line and polygon datasets.

2. If the original data set includes multiple attribute columns, then the attribute filtering can
provide very good performance increases.

3. Data compression methods can help reduce at least half of the data size.

4. In general, the outputs from the geometry generalization + attribute filtering + data
compressing and pbf workflow are the smallest, which is very suitable for the scenarios of
low bandwidth.

8.4. Recommendations & Future Work
In this Vector Tile WFS testbed, both the WFS and WMTS services for vector tiling were
implemented, and experiments conducted with different datasets, output formats and spatial
reference systems. Based on the presented results, the following directions for future work are
suggested:

Test the capability of GeoPackage data format for Vector Tile data

GeoPackage is actually a SQLite (database) container. One advantage of GeoPackage is it can handle
massive or complex datasets such as raster tile matrix sets or vector features with attributes. For
vector tile data, although the original dataset could be large, after the preprocessing, data are
organized per tiles, and each tile’s data size is relatively small. If each tile is stored as an individual
GeoPackage file, it will be very time consuming and inefficient. If GeoPackage needs to support for
Vector Tiles, more research should be dedicated in that direction.

Support the visualization style from server side

One advantage of using vector tiles is the flexibility for rendering on the client side. However,
defining a suitable/beautiful rendering scheme is not an easy job, especially for the users with
limited experience. Hence, being able to provide rendering schemes for vector tiles could be an
important functionality for the server side. OGC’s SLD is a good candidate for the scheme. This
work is worth trying in future.

Finalize OGC’s standard for Vector Tile data service

Among this Vector Tile group, different approaches of vector tile services were implemented by the
participants. Many experiments were conducted on top of the implementations to test/compare the
capability and performance of vector tiles. With the experience and knowledge gained from testbed
activities and the recommended future work, an OGC’s Vector Tile implementation profile could be
defined.
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Chapter 9. Vector Tiles Client
Implementation
This chapter presents the work carried out in developing, implementing and demonstrating a
vector tiling open source client plugin for QGIS.

9.1. Design and Implementation

9.1.1. System requirements

The client is designed as a plug-in to QGIS. The basic software platform is as follows:

• QGIS 2.18 or later

• Python 2.7 or later

• Pre-installed osgeo ogr (with gdal/ogr), Google pbf library, Shapely, geojson

9.1.2. Overall architecture

The Vector Tile Client plug-in is designed and developed following the general structure and design
data provider principles of QGIS but maintains a special registry for the client itself. The general
structure keeps connected through vector tile layer and its data provider. Two separate registries
are implemented to keep track of the related resources, one for vector tile layers and another for
vector tile data providers. Customized providers of vector tile layers can be added into the registry.
The following figure shows the main components.
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Figure 52. Overall Architecture and Main Components of the Vector Tile Client

9.1.3. Functional design and implementation

This section describes some of the main features implemented in the QGIS Vector Tile Client. The
Vector Tile Client is deployed as a plug-in. The following figure shows the main menus.
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Figure 53. Main menu of the Vector Tile Client

Tile Scheme Support

Tiles can be distributed through different schemes. The client is designed and implemented to
support the following schemes:

• XYZ scheme

• TMS scheme

• WFS tile service with XYZ scheme

• WFS tile service with zoomLevel scheme

Vector Data Format Support

The following data formats are specifically supported:

• GeoJSON

• MapBox Vector Tile

• GML

As the plug-in is developed as a plugin running within QGIS, many common data formats can be
extended and supported.

Projections

The following projections are supported:

• EPSG:4326

• EPSG:3857
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Other standard coded EPSG coordinate reference systems are supported. However, the use of a
non-global coordinate reference system needs to be further tested. In theory, non-global CRS should
work as long as the server can properly handle non-coverage when they can be presented and
described with an EPSG code. The backbone implementation for Testbed 13 activities is supported
by the gDAL and QGIS libraries. The service needs to be able to handle the extra request of invalid
tiles within a bounding box but also between zones such as in the UTM projection.

Geometry and Tile Rendering

Dissolving is used in producing smooth rendering of tiles. The plug-in was developed as a set of
extended functions to operate within QGIS, a full function open source geographical information
system. By leveraging the geospatial capability of QGIS, the plug-in has full support of geometry
topologies. A Spatialite GIS database was used as the intermediate data provider to connect the data
from Vector Tile services and the rendering layers of QGIS.

Attributes and Queries

Display and query of attributes are supported across zoom levels. The dissolving process of
geometries kept all the attributes intact.

Moving Feature Support

The choice of caching or non-caching is enabled at the client side to optionally support moving
features. The moving feature is separated in different layers that are "always refresh (non-cache)".
The instant update on the dataset at the service would be presented and rendered instantly. The
actual support for moving features may be realized with an added time dimension in the tile
scheme. For example, if the service supports dimensions beyond 2-d, the tile scheme may be
extended from zxy to zxyt where t represents the time dimension. The feature with extended time
dimension is not implemented.

Mixed Feature Management

Mixed features are common in MapBox packed vector tiles that have point, line, and polygon
geometries. In GIS, these geometries are handled differently and therefore they are managed in
different layers. QGIS does the same as most GIS software package in treating different geometry
types as different layers. To support the mixed geometries in the same packed vector tiles, the plug-
in separates the incoming vector tiles into different layers according to their geometry types and
manage them in a layer group. Groups can have common actions and responses such as zoom in
and out with proper detailed zoom level. By doing so, the functional requirements of geospatial
operations are met.

9.2. Integration Experiments
Several vector tiling focused tests and use cases were performed during the Testbed 13 S3D thread.
The experiments were:

• (1) accessing and rendering vector tiles through RESTful service (in TileJSON);

• (2) accessing and rendering vector tiles in MapBox vector tile format through a WFS Vector Tile
service;
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• (3) accessing and rendering vector tiles in GeoJSON format through a WFS Vector Tile service;

• (4) accessing and rendering vector tiles in GML through WFS Vector Tile services;

• (5) attribute query and display in vector tiles.

9.2.1. Vector Tile in MapBox vector tile format through TileJSON description

The MapBox vector tile service normally has a metadata description document in the format of a
TileJSON as specified in https://github.com/mapbox/tilejson-spec. TileJSON defines how the tiles are
distributed. The essential information for tiling are the extent of the map, zoom levels, access urls,
tile scheme, and formats. The implemented QGIS Vector Tile plug-in is capable of parsing TileJSON
and access selected vector tile layer to display in QGIS. The following figures show the plug-in in
action.

Figure 54. Populated vector tile layers from TileJSON in the Vector Tile Client
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Figure 55. Access and render layer group for OpenStreet map in the Vector Tile Client

9.2.2. Vector Tiles in MapBox vector tile through WFS

The user needs to provide basic tiling information through a graphic user interface which is
partially populated or exemplified depending on the chosen implementation of the extended WFS
service with vector tile support. Part of the information can be parsed from the feature description
in a standard WFS implementation. This information includes the bounding box and coordinate
reference system. However, the user needs to manually enter vector tile specific information needs
user to input manually. This user entered information includes zoom levels, tile size, and tile
scheme. The tile delivery format is also not specified in the current WFS standard. The user needs
to specifically to point out the format to be expected from the WFS response. Currently, the plug-in
accepts two specific formats: one is pbf (MapBox vector tile format) and the other is vt-geojson
(GeoJSON). The following figures show how the information is input and the results to be shown in
QGIS through the Vector Tile Client.
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Figure 56. WFS Vector Tile Service input form for tiles in MapBox Vector Tile format

Figure 57. Rendered vector tile map in MapBox Vector Tile format accessed from ASU WFS Vector Tile
Service
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The QGIS zoom-in, zoom-out, and panning operations lead to different zoom levels of vector tiles to
be accessed and rendered in QGIS. The following images show different zoom levels of vector tiles
rendered in QGIS through the Vector Tile Client.

Figure 58. WFS Vector Tile tiles at zoom level 3 from ASU WFS Vector Tile Service

Figure 59. WFS Vector Tile tiles at zoom level 6 from ASU WFS Vector Tile Service
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9.2.3. Vector Tile in GeoJSON through WFS

The vector tiles served as GeoJSON can be accessed and rendered. The following screen captures
show some of the results and experiments related to accessing vector tiles served as GeoJSON
through the WFS Vector Tile Service at ASU.

Figure 60. WFS Vector Tile Service input form for tiles in GeoJSON format
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Figure 61. Rendered vector tile map in GeoJSON format accessed from ASU WFS Vector Tile Service

9.2.4. Vector Tile in GML through WFS

Vector tiles encoded as GML can be accessed and rendered in the Vector Tile Client. Ecere used
another scheme to implement the vector tile services through a WFS instance. The Ecere
implementation has partial information available through additional tags in the Feature
description of its GetCapabilities response. Zoom level information is described using the added tag
<MaxZoomLevel>. A custom request zoomLevel parameter was also added. The following figures
show screen captures of experimental access and rendering of vector tiles served encoded as GML
through the Ecere WFS Vector Tile Services endpoint.

102



Figure 62. WFS Vector Tile Service input form for tiles in GMU through the WFS Vector Tile Service at Ecere

Figure 63. Rendered vector tile map in GML format accessed from the WFS Vector Tile Service at Ecere
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Figure 64. Rendered multiple layers of vector tile map in GML format accessed from the WFS Vector Tile
Service at Ecere

9.2.5. Attribute Query and Display

The query and display of attributes for individual features are supported with the Vector Tile Client.
Rich attributes are sent along with the vector tiles. The attributes can be instantly displayed and
filtered. The following show the attributes accessed in QGIS through the Vector Tile Client.

104



Figure 65. Attribute display by identified feature in a rendered vector tile map from the WFS Vector Tile
Service at ASU
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Figure 66. Attributes of an OpenStreet Map Vector Tile Layer map

Figure 67. Attribute table of a Vector Tile Layer
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9.3. Discussions and Recommendations
This section summarizes the challenges encountered during the implementation of the vector tiling
plugin for QGIS. Recommendations are also presented.

9.3.1. Tile Scheme Specification

The essential information to establish the effective connections and communication between vector
tile services and vector tile client are as follows:

• Tile size

• Tile scheme

• Tile data format

• Tile projection

• Extent of data

• Zoom level

• Dimension

TileJSON provides the ability to communicate several information elements including: projection,
tile size, and dimension. However, TopoJSON is rigid and not flexible enough to support all the
variations of geographic information, especially projections and alternative tile size and
dimensions.

The two alternative implementations of vector tile services using OGC WFS services demonstrated
the potential for supporting a general solution for vector tile implementation. The missing elements
are related to the specification for describing the tile services.

Tilesets may be specified to cover the irregular, non-continuous tiles. This can be useful for those
projections leading to discontinuous tiles, such as UTM.

There are no requirements/operations in the WFS standard for supporting the access to specific
tiles. In the experiments involving use of a WFS instance to serve vector tiles through the ASU and
ECERE implementations, an extra parameter was added to the GetFeature operation. That is 'vid' for
ASU and 'ZoomLevel' for ECERE. In the capabilities of WFS, there is currently no way to express the
support of these operations.

Recommendations on metadata description of tile service

The following information should be explicitly described within the service description of a vector
tile service:

• Tile size

• Tile scheme

• Tile data format

• Tile projection
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• Extent of data

• Zoom range

• Dimension

In the WFS standard, these can be done with the addition of feature description in the capabilities
document. For example, <minZoom> and <maxZoom> could be added to the feature description.

At the interface level, the WFS standard needs to be extended to support tile identification. The
practices of extending WFS to support vector tiles in ASU and ECERE may serve as examples on
how to define such an extension. To extend GetFeature to support vector tiles, one could add tileId
and tileScheme parameters to the GetFeature operation. Depending on the selected tileScheme,
tileId could be formed and sent as part of the GetFeature operation. The tileId would be dependent
on the tile scheme. For example, zyz scheme is in the form of z/x/y. The explicit declaration of
tileScheme may be necessary if the service implements more than one scheme. The tileId format
may not be efficient to uniquely specify the tile scheme. This is true for the case of xyz and tms.
Both schemes take the same z/x/y template but the tile encoding flips the y axis in the tile
coordinate system. The explicit declaration of a tile scheme is necessary for both the client and the
server to know which tileset or algorithms to place tiles in the overall map. This might be of interest
to the OGC Quality of Service SWG and D&I DWG groups.

9.3.2. Specification of compression algorithm

Tile data are mostly communicated in a client-server setting. The client can be as thin as a
lightweight browser or as rich as a full desktop GIS package. The constraint is to maintain sufficient
speed of transferring tile data through the network. Efficient compression can be very useful in
reducing the packet size for each tile and improving the performance of transmitting data over the
network for each tile. This can be especially true for these text-based encoding, such as GeoJSON,
TopoJSON, and GML. Their size may be quite large especially when there are many attributes.
Different implementations of tile services may use different compression algorithms to achieve a
significant reduction of data packet sizes transmitted over the network. The compression
algorithms for vector-based tiles should be lossless to maintain the accurate topological
relationships in vector-based spatial database. The commonly used lossless compression algorithms
include run-length encoding (RLE), prediction by partial matching (PPM), Huffman coding, bzip2
(combination of Burrows-Wheeler transform, RLE, and Huffman coding), variations of dictionary-
based algorithm - Lempel-Ziv compression (e.g. DEFLATE, Lempel-Ziv-Markov chain algorithm
(LZMA), Lempel-Ziv-Oberhumer (LZO), Lempel-Ziv-Storer-Szymanski (LZSS), Lempe-Ziv-Welch
(LZW)). Different compression algorithms require using of different decompression algorithms
before the compressed data can be actually used in the client. For example, in the Linux or Unix
environments, unpack is used to decompress files by pack, bunzip2 by bzip2, unrar by LZSS, 7za for
LZMA, unzip or gunzip for DEFLATE, lzop for LZO, gunzip by LZW. The mismatching of
compression and decompression algorithms will lead to failures.

Recommendations on explicitly specifying the compression algorithm

In the server-client contract, the compression algorithm should be explicitly described. This would
allow the client to properly decompress the tile data.

In extending the WFS standard, an attribute should be added to each FeatureType in the WFS
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capabilities document. A set of commonly used compression algorithm should be defined, named
and identified.

9.3.3. Error Handling Contract

Errors occur at several levels. The following are errors that were encountered during the
integration experiments with the Vector Tile services by ASU and Ecere.

• Not a valid tile: Tile identification is formed through calculation. The tile id may not exist in the
Vector Tile service. This leads to invalid request to the Vector tile server. The server may
respond with exception or may leave to the default response with no information.

• Feature with empty geometry: The features returned from the server may contain features
without geometry. This error may be introduced in the generation of vector tiles at the server.

• Feature with invalid topology: The features returned from the server may contain invalid
geometry, such as self-intersection, holes outside of exterior ring. These errors may be
introduced during the generation of vector tiles at the server.

Recommendations on explicit exception response and handling

It is recommended to specify the proper and best practice in reporting and handling the exceptions
related to the Vector Tile serving and accessing in the Vector Tile standard. Both server and client
should be made clear how to respond to exceptions. Common exception terms may be explicitly
reported with predefined terms.
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Chapter 10. Conclusions and
Recommendations
The Testbed 13 Vector Tiling thread experimented with the generation of vector tiles from source
data, the creation of vector tiling services and the implementation of vector tiles clients with the
aim of delivering faster, lighter and more robust vector data via the web. The presented work
demonstrated three different approaches to vector tiling geospatial web services:

Approach 1 - Web Feature Service (WFS) with Vector Tiles extensions

Approach 2 - Web Map Tile Service (WMTS) with Vector Tiles extensions

Approach 3 - Unified Map Service, unifying WMS, WMTS, WFS & WCS capabilities with shared
semantics

All the three tested approaches were assessed on their ability to satisfy support for a range of
geometry types, SLD/SE support, projection support, tile attribution and moving features as well as
supporting low bandwidth use cases.

Approach 1, demonstrated the ability to leverage the current ability of WFS to offer a rich set of
capabilities such as filtering, queries, transactions and more. This approach is based on the addition
of a zoomLevel parameter (Change Request CR514 - 04-094) to the current standard. Another
implementation demonstrated the use of the NGA NSG WFS profile using a GeoServer based Vector
Tile WFS supporting GeoPackage as one of the output formats.

Approach 2 demonstrated the use of GeoServer enabled via the GeoWebCache extension to serve
WMTS vector tiles in GeoJSON, TopoJSON or Mapbox Vector Tile (MVT). Another implementation
demonstrated a proposed extension to the existing WMTS service (Change Request CR517 - 07-
057r7) to support more vector output formats in the 'Format' tag including GML, GNOSIS map tiles,
GeoECON and ESRI Shapefiles.

Approach 3, demonstrated principles for a Unified Map Service that provides the ability to serve a
tiled coverage service in addition to raster and vector tiles. An implementation of a UMS prototype
started, and its continued development is recommended for future work.

10.1. Recommendations
Recommendations contributing to the creation of a future OGC Vector Tiling standard, include:

• provide a parameter that defines the exchange format with several possibilities for transferring
vector data (e.g. GML, GeoJSON, etc.) allowing for the creation of performant web or mobile
clients that need a compact and simple exchange format as well as complex clients that need a
more advanced exchange format;

• a tiling scheme based on the established WMTS standard that has been used for raster tiling
offers the ability to combine vector tiles with raster layers and support for existing coordinate
systems;

• not define how vector tiles are stored, leave storage structures to the implementer to decide;
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• optimize attribute handling by adopting either of two recommended approaches:

◦ a reference system where the attributes of a feature are stored in only one anchor tile while
all other tiles which contain parts of the same feature simply contain a reference to the tile
which contains all the attributes

◦ querying attributes separately and/or selectively from the tile geometry

• associate with a vector tiling service a styling profile offering similar abilities to SLD offerings to
a WMS endpoint;

• offer the ability to support any coordinate reference systems like all the other commonly used
OGC web service standards (WMS, WMTS and WFS);

• make sure that generalization and filtering maintains topological consistency to allow clients to
reassemble features transferred using vector tiles;

• handling complex geometry types, for example, curve-based shapes can be done in either of two
ways:

◦ having the ability to store such parametric shapes in all involved tiles and eliminating
duplicate shapes in the client

◦ converting complex geometry types to simple points, lines or polygons features prior to
tiling

• as identified in Testbed 12 (Vector Tiling ER) a feature-based solution (considering storage,
visualization and analysis) should be preferred over a render-based solution (considering only
visualization) due to its flexibility, e.g. easily combine vector tiles with raster layers in the client
or reassemble features (e.g. download services).

This ER also makes the recommendation to extend the existing WFS standard with a 'zoomLevel'
element and the existing WMTS standard with a 'Format' tag to support a series of vector output
formats. The participants also recommended that any follow-on work and discussions on vector
tiling should preferably happen in an OGC dedicated working group such as a Standards Working
Groups (SWG) where the requirements for a Unified Map Service could be considered in
combination to the other vector tiling approaches presented.

10.2. Change Requests
The following Change Requests (CRs) have been identified during Testbed 13:

• CR514 - 04-094 (WFS) Zoom level and tiling schemes

• CR515 - 07-036 (GML) Hidden edges of polygons

• CR516 - 04-094 (WFS) Feature type in GetCapabilities

• CR517 - 07-057r7 (WMTS) Vector formats support

• CR518 - 07-057r7 (WMTS) Varying width tiling matrix

• CR519 - 05-077r4 (SE) Overriding filter rules

• CR520 - (New) Global tiling scheme adapted to polar regions

• CR521 - (New) Compact binary format for vector tiles & more

111



• CR522 - (New) GeoECON: Geospatial data described in ECON

• CR523 - (New) A data store holding tiled geospatial data of many types

• CR524 - (New) Unified Map Service: Regrouping WFS, WMS, WMTS, WCS capabilities;
JSON/ECON based

Appendix A: Global GNOSIS tiling scheme adapted to
polar regions
(CR 520 [http://ogc.standardstracker.org/show_request.cgi?id=520])

The GNOSIS tiling scheme is a quad-tree (except that polar tiles have only 3 child nodes rather than
4). It is similar to what is used in GeoTIFF tile pyramids, where passing to the next zoom level each
tile is split into 4 areas of equal geographic coverage and the data for each of those 4 tiles will be
twice as dense in both directions (4x more data).

To take into account the fact that there is less distance at the poles, if a half of the tile being split
across a parallel touches a pole, that half is not split along a meridian, and thus only 3 tiles are
produced instead of 4:

Zoom Level 0
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Zoom Level 1

Zoom Level 2

Each tile is intended to be mapped to approximately 256 x 256 pixels on a display. Zoom level
equivalence can therefore be computed from a pixel density, taking into account the Earth’s major
axis according to the WGS84 spheroid measurement (6378.137 km):
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   static define firstZoomLevelDelta = Pi/2;
   static define wgs84Major = 6378137.0;
   static define firstZoomLevelTileDistance = (Meters)(wgs84Major *
firstZoomLevelDelta);
   static define tilePixels = 256.0;

   public double metersPerPixelFromLevel(int level)
   {
      return firstZoomLevelTileDistance / (tilePixels * (1 << level));
   }

   public int levelFromMetersPerPixel(double metersPerPixel)
   {
      return log2i((uint)ceil(firstZoomLevelTileDistance / (metersPerPixel *
tilePixels)));
   }

Zoom levels can also be related to a representative fraction scale, using the standard cartographic
assumption that paper resolution is approximately 0.3 mm/pixels.

   static define paperRes = Meters { 0.0003 };       // 0.3 mm/pixels

   public double scaleDenominatorFromLevel(int level)
   {
      return firstZoomLevelTileDistance / ((1 << level) * tilePixels * paperRes);
   }

   public int levelFromScaleDenominator(double denominator)
   {
      return log2i((uint)ceil(firstZoomLevelTileDistance / (denominator * tilePixels *
paperRes)));
   }

A tile key can be represented by a single 64 bit integer with support up to level 28 (0.15mm / pixel,
2:1 scale).

An eC [http://ec-lang.org] reference implementation of the TileKey / Geospatial Extent conversion
follows:

   static Radians wrapLon(Radians x)
   {
           if(x < -Pi) x += 2*Pi * floor((Pi - x) / (2*Pi));
      else if(x >  Pi) x -= 2*Pi * floor((x + Pi) / (2*Pi));
    return x;
   }

   public struct GeoPoint { Degrees lat, lon; };
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   public struct GeoExtent { GeoPoint ll, ur; };

   public class TileKey : uint64
   {
      Radians ::getDeltaLon(Radians midLat, int level)
      {
         Radians w { Pi / 2 }; // 90° at first zoom level
         Radians cutOff { };
         int i;
         midLat = fabs(midLat);
         for(i = 0; i < level; i++)
            if(midLat < (cutOff = (cutOff + Pi/2) / 2))
               w /= 2;
         return w;
      }

   public:
      uint level:5:59, lat:29:30, lon:30:0;

      property GeoExtent extent
      {
         get
         {
            Radians dLat { Pi / (2 << level) };
            Radians dLon;

            value.ll.lat = -Pi / 2 + lat * dLat;
            value.ur.lat = value.ll.lat + dLat;

            dLon = getDeltaLon((value.ll.lat + value.ur.lat) / 2, level);

            value.ll.lon = wrapLon(lon * dLon - Pi);
            value.ur.lon = value.ll.lon + dLon;
         }
      }

      TileKey ::fromMidPoint(const GeoPoint midPoint, int level)
      {
         Radians dLat { Pi / (2 << level) };
         int lat = (int)(double)((midPoint.lat + Pi / 2) / dLat);
         Radians dLon = getDeltaLon(midPoint.lat, level);
         int lon = (int)(double)((wrapLon(midPoint.lon) + Pi) / dLon);
         return { level, lat, lon };
      }
   };
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Appendix B: GNOSIS Compact Vector Tiles
representation
(CR 521 [http://ogc.standardstracker.org/show_request.cgi?id=521])

To better picture how the compact vector tiles works, see also its ECON textual representation in
annex C

10.B.1. Compact storage as localized vertices with accuracy proportional to
scale

To achieve compact storage, the following approach is adopted:

• Coordinates are specified as two 16-bit signed integer per vertex, the first integer representing
the latitude, and the second the longitude — like ISO 6709:1983 [https://en.wikipedia.org/wiki/

ISO_6709]. The full range (-32,767..32,767) of these integers are linearly mapped to the geospatial
extent of the tile.

• Preserving proper topology with varying accuracy was a major challenge which has been
solved in the GNOSIS vector pipeline.

• All points used by the tile are specified in one single array.

10.B.2. Pre-triangulated for high performance GPU rendering and optimal
service-to-display processing

The following approach is adopted for pre-triangulation:

• Polygons are described as triangles since tessellation is a required step for hardware
accelerated rendering of polygons which are either concave or feature inner holes. The
tessellation process can add to the initial loading/processing time before incoming geometry can
be visualized on the screen, and therefore this delay is minimized.

• Constrained Delaunay Triangulation [https://en.wikipedia.org/wiki/Constrained_Delaunay_triangulation]
is performed to produce an optimal tessellation which maximizes the fill rate.

10.B.3. Enforced topologically correct representation (shared vertex
indices)

Enforced topologically correct representation is applied as follows:

• Lines and polygons provide a list of 16-bit indices into the array of vertices to be re-used by
multiple elements sharing the same edges, or by multiple pieces of the same element
connecting. This ensures proper topology as common edges and the spatial relationship
between different elements are preserved, and makes the representation suitable for both high
performance visualization as well as analysis.

• For lines, the indices of one single element make up a single line string

• For polygons, the indices of one single element make up a list of triangles (3 indices per
triangle).
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• The polygon indices making up triangles are always specified in a counter-clockwise manner.

10.B.4. Elements listing indices making up a given feature uniquely
identified by a 64-bit ID

Elements are specified by the ID, the start index (in the list of indices for lines and polygons; in the
list of points for points) and the count of indices/points used.

10.B.5. Vertex flags for identifying tile boundaries and artificial edges

Vertex flags are applied as follows:

• In order to avoid rendering unwanted edges at the tile boundaries of polygons, flags are marked
at each vertex.

• This feature is also used to avoid similar edges problems at the dateline with global datasets

• Each vertex actually has two set of flags, represented in the Tiles API by the PolygonVertexFlags
class.

• The first set of flags indicates whether a vertex is on any of a tile’s 4 boundaries (top, left,
bottom, right). These flags are also useful for recombining tiles, by identifying vertices at a tile’s
border. If an edge links two vertices flagged as being on the same edge, it is deemed to be an
artificial edge, unless explicitly marked as being an actual edge by the second set of flags.

• The other direction flags as they are named in the Tiles API indicate whether there is actually a
real edge (i.e. a segment of a polygon contour not introduced by tiling or by wrapping around
the dateline) leaving from the flagged vertex going into each 4 directions (up, left, down, right).
These flags should only set or inspected in relation to the corresponding set of edge flags:

◦ For on the right edge and on the left edge flags, the up and/or down edge is not artificial flags
can be set.

◦ For on the top edge and on the bottom edge flags, the left and/or right edge is not artificial
flags can be set.

• The PolygonVertexFlags provides a simple draw() method to determine whether an edge from
one point to another should be drawn or not. The ordering of the vertices matter: the method
should be called with a point counter-clockwise to the object on which it is invoked. This is
because the flags mark whether an actual edge from the source data passed through each
vertex coming from a certain direction.

• The PolygonVertexFlags class is implemented as such:
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   public class PolygonVertexFlags : byte
   {
   public:
      EdgeFlags onEdge:4;
      DirFlags d:4;
      bool draw(PolygonVertexFlags b)
      {
         bool drawEdge = true;
         EdgeFlags cf = onEdge & b.onEdge;
         if(cf && (
            (cf.right  && (!d.upIn    && !b.d.downIn )) ||
            (cf.top    && (!d.leftIn  && !b.d.rightIn)) ||
            (cf.left   && (!d.downIn  && !b.d.upIn   )) ||
            (cf.bottom && (!d.rightIn && !b.d.leftIn ))))
            drawEdge = false;
         return drawEdge;
      }
   };

• For line features, a single flag is used, set to true if the vertex was not in the original data. In the
binary representation, a single bit is used per vertex.

10.B.6. Center lines for curved area labels

Since computing the center lines of curved polygons is better done in regard to the overall shapes
before tiling occurs, this information can optionally be included together with polygon geometry.
This is useful for example to render labels following the curve of those areas, such as typically seen
on lakes and large rivers.

10.B.7. Layout for binary representation of compact vector tiles

NOTE

• Offsets and sizes are specified in decimal bytes.

• Despite MSB being network byte ordering, values are encoded as little-endian
(Least Significant Bit first) to avoid a very significant amount of byte swapping,
accommodating today’s most common architectures.

The tile data is prefixed by a 24 bytes header:

GNOSIS Map Tile Header

Offset Type Size Name Description

0 char 3 Signature The ASCII
characters GMT to
identify a GNOSIS
Map Tile

3 uint8 1 Major Major version
number (currently
1)
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4 uint8 1 Minor Minor version
number (currently
0)

5 uint8 1 Format The following
vector formats
have been
determined so far:
- 0x10 Vector
points
- 0x14 Vector lines
- 0x18 Vector
polygons

See annex D for
the additional
formats defined
for imagery,
coverage and 3D
data.

6 uint16 2 Flags Currently the
following flags are
defined:
0x0001 Tile is full
(all higher
resolution tiles
will also be full)
0x0002 Tile is
empty (all higher
resolution tiles
will also be empty)

8 uint64 8 Tile Key A 64-bit unsigned
integer uniquely
identifying the tile
within the tiling
scheme.
For the GNOSIS
Global Grid, the
layout is as
follows:
- bits 59-63 (5):
zoom level (values
0-28 are valid)
- bits 30-58 (29):
latitude index
- bits 0-29 (30):
longitude index

16 uint32 4 Size Size of the data,
uncompressed
(excluding header)
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20 uint32 4 Encoding &
Compressed size

The high byte
identifies the
encoding/compres
sion method.

The following
values have been
defined so far:
- 0x00
Uncompressed
- 0x01 Deflate
(zlib)
- 0x02 LZMA
(See a comparison
of compression
methods in
formats
comparison)

For raster and
gridded coverage,
these additional
values are
defined:
- 0x80 JPEG-2000
- 0x81 PNG

The low 3 bytes
store the
compressed size (0
if uncompressed).

24 Total size of header

The actual tile data follows:

Binary layout for Points tiles

Offset Type Size Name Description

0 int 4 numPoints The number of
vertices in the tile

Vertices (numPoints occurrences)
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Offset Type Size Name Description

4+n*4 int16 2 latitude Latitude mapped
from the tile’s
latitude extent to
-32,767 to 32,767,
with the bottom
(south) edge being
at -32,767

6+n*4 int16 2 longitude Longitude mapped
from the tile’s
longitude extent to
-32,767 to 32,767,
with the left (west)
edge being at
-32,767

(end of vertices data)

4+numPoints*4 int 4 numElements The number of
elements in the
tile

Elements (numElements occurrences)

8+numPoints*4
+n*16

int64 8 id ID identifying the
feature the points
within this
element are part
of (in the data
store’s geometry
table).

16+numPoints*4
+n*16

int 4 start Index to the first
vertices for this
element

20+numPoints*4
+n*16

int 4 count Number of
consecutive
vertices making
up this element

24+numPoints*4
+numElements*16

Total Size

Binary layout for Lines tiles
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Offset Type Size Name Description

0 int 4 numPoints The number of
vertices in the tile

Vertices (numPoints occurrences)

4+n*4 int16 2 latitude Latitude mapped
from the tile’s
latitude extent to
-32,767 to 32,767,
with the bottom
(south) edge being
at -32,767

6+n*4 int16 2 longitude Longitude mapped
from the tile’s
longitude extent to
-32,767 to 32,767,
with the left (west)
edge being at
-32,767

(end of vertices data)

4+numPoints*4 uint8 (numPoints+7)/8 flags A compact bits
array of flags (1 bit
per vertex)
indicating
whether the
vertex is artificial
(i.e not present in
source data). The
least significant bit
represents the
first of the up to 8
vertices mapped
to each byte of
flags.

4+numPoints*4
+(numPoints+7)/8

int 4 numIndices The number of
indices in the tile

8+numPoints*4
+(numPoints+7)/8

uint16 numIndices * 2 indices 16-bit indices into
the vertex table to
be referenced by
elements

8+numPoints*4
+(numPoints+7)/8
+numIndices*2

int 4 numElements The number of
elements in the
tile

Elements (numElements occurrences)
Each element defines a line string as a series of indices.
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Offset Type Size Name Description

12+numPoints*4
+(numPoints+7)/8
+numIndices*2
+n*16

int64 8 id ID identifying the
feature the lines
within this
element are part
of (in the data
store’s geometry
table).

20+numPoints*4
+(numPoints+7)/8
+numIndices*2
+n*16

int 4 start Index to the first
index making up
the lines for this
element

24+numPoints*4
+(numPoints+7)/8
+numIndices*2
+n*16

int 4 count Number of
consecutive
indices making up
the lines for this
element

28+numPoints*4
+(numPoints+7)/8
+numIndices*2
+numElements*16

Total Size

Binary layout for Polygons tiles

Offset Type Size Name Description

0 int 4 numPoints The number of
vertices in the tile

Vertices (numPoints occurrences)

4+n*4 int16 2 latitude Latitude mapped
from the tile’s
latitude extent to
-32,767 to 32,767,
with the bottom
(south) edge being
at -32,767
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Offset Type Size Name Description

6+n*4 int16 2 longitude Longitude mapped
from the tile’s
longitude extent to
-32,767 to 32,767,
with the left (west)
edge being at
-32,767

(end of vertices data)

Polygon Vertex Flags (numPoints occurrences)
Each vertex has an associated flag indicating whether it lies on the tile boundary and whether
edges stemming from it were in the source data.

4+numPoints*4+n
(& 0x01)

bit single bit onBottomEdge Set if this vertex
lies on the bottom
tile boundary

4+numPoints*4+n
(& 0x02)

bit single bit onLeftEdge Set if this vertex
lies on the left tile
boundary

4+numPoints*4+n
(& 0x04)

bit single bit onTopEdge Set if this vertex
lies on the top tile
boundary

4+numPoints*4+n
(& 0x08)

bit single bit onRightEdge Set if this vertex
lies on the right
tile boundary

4+numPoints*4+n
(& 0x10)

bit single bit downIn Set if an edge from
this vertex going
down originates
from source data

4+numPoints*4+n
(& 0x20)

bit single bit leftIn Set if an edge from
this vertex going
left originates
from source data

4+numPoints*4+n
(& 0x40)

bit single bit upIn Set if an edge from
this vertex going
up originates from
source data

4+numPoints*4+n
(& 0x80)

bit single bit rightIn Set if an edge from
this vertex going
right originates
from source data

(end of vertex flags)

4+numPoints*4
+numPoints

int 4 numIndices The number of
indices in the tile
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Offset Type Size Name Description

8+numPoints*4
+numPoints

uint16 numIndices * 2 indices 16-bit indices into
the vertex table to
be referenced by
elements

8+numPoints*4
+numPoints
+numIndices*2

int 4 numElements The number of
elements in the
tile

Elements (numElements occurrences)
Each element defines polygons as a series of triplets of indices, each defining a counter-clockwise
triangle.

12+numPoints*4
+numPoints
+numIndices*2
+n*16

int64 8 id ID identifying the
feature the
polygons within
this element are
part of (in the data
store’s geometry
table).

20+numPoints*4
+numPoints
+numIndices*2
+n*16

int 4 start Index to the first
index making up
the polygons for
this element

24+numPoints*4
+numPoints
+numIndices*2
+n*16

int 4 count Number of
consecutive
indices making up
the polygons for
this element

(end of elements data)

28+numPoints*4
+numPoints
+numIndices*2
+numElements*16

int 4 numCenterLines The number of
center lines
defined for the
tile. 0 if center
lines are not
defined.

Center Lines (numCenterLines occurrences)
Each center line defines a line string as a series of indices.

32+numPoints*4
+numPoints
+numIndices*2
+numElements*16
+n*16

int64 8 id ID identifying the
feature for which
a center line is
being defined (in
the data store’s
geometry table).

40+numPoints*4
+numPoints
+numIndices*2
+numElements*16
+n*16

int 4 start Index to the first
index making up
this center line
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Offset Type Size Name Description

44+numPoints*4
+numPoints
+numIndices*2
+numElements*16
+n*16

int 4 count Number of
consecutive
indices making up
this center line

48+numPoints*4
+numPoints
+numIndices*2
+numElements*16
+numCenterlines*
16

Total Size

Appendix C: ECON-based formats for attributes and
textual representation

10.C.1. ECON (eC Object Notation) Overview

ECON [http://ec-lang.org/econ/] is a data interchange format defined as a superset
of http://json.org[JSON], with extra features allowing it to map directly to the eC [http://ec-lang.org/]
object instantiation syntax.

JSON is valid ECON, but in order to output the data in the distinctive ECON syntax some restrictions
apply (e.g. identifier names should not contain spaces).

ECON support is available as part of the Ecere SDK since version 0.44.15 (through the ECONParser
class and WriteECONObject() function).

The distinctive ECON features are:

• The "name" before the ':' of objects' name/value pairs can drop quotes, as long as the identifiers
names are restricted to valid C/eC identifiers (e.g. no spaces).

• The colon (':') can be replaced by an equal sign ('=').

• Member names can be implied (e.g. position = { 10, 20 }) and omitted based on the schema (e.g
the struct being serialized to ECON).

• Both single-line comments (//) and multi-line comments (/* */) are supported (C/C++/eC style).

• C-Style hexadecimal numbers are allowed as values.

• Enumeration values can be unquoted.

• Multi-line strings are supported by closing the double-quotes and reopening them on the next
line.

• As part of an object construct, an optional class name is allowed to precede the opening curly
bracket, so as to allow subclasses. These could replace a type member required in JSON and
dictate different sets of valid name/value pairs for the object. If no class name is specified, the
base class is expected.

• Semicolons (;) are allowed as separators in addition to commas, including extra unneeded
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semicolons.

ECON convention follows the eC convention of identifiers beginning with a lower case and
following camelCase, whereas classes should begin with an upper case.

At this point, name/value pairs are only being used for data members and properties. Future
versions may allow specifying methods, to allow some form of scripting to describe object
behaviors.

Example showcasing ECON specific features:

   /*
      This is sample eC Object Notation (ECON).
      It describes a number of graphical elements, of classes derived from
      a base Shape class which will get loaded together in one array.
      It would also be valid eC syntax for instantiating an Array<Shape> object.
   */
   Array<Shape>
   { [
      Circle
      {
         lineColor = red,
         fillColor = 0x008000;
         center = { 100, 120 } // equivalent to: center = { x = 100, y = 120 }
      },
      Text
      {
         position = Point { 200, 200 };
         string = "The quick brown fox\n"
                  "jumps over the lazy dog.";
      }
   ] }

10.C.2. GeoECON format (textual representation of VectorFeatureCollection)

(CR 522 [http://ogc.standardstracker.org/show_request.cgi?id=522])

This representation came to life as a by-product of the GNOSIS Tiles API, since ECON serialization of
eC classes is effortlessly supported. It can be described as follows:

• The syntax for defining geometry in the VectorFeatureCollection classes in eC is identical to
GeoECON.

• The syntax for other languages is very similar, with minor tweaks to conform to the language
syntax.

• It has been used to test the functionality of the Vector Feature Collection classes.

• Although GeoECON is not expected to garner wide adoption, it does offer some minor
advantages over GeoJSON.

• One such advantage is that due to the possibility of omitting keys / member identifiers, the
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proper object symbols { } can be used rather than the list symbols [ ] to express coordinates,
without resulting in excess verbosity.

• GeoECON also offers support for hidden edges segments within polygons.

• Coordinates are specified as WGS84 / EPSG:4326 degrees (latitude, longitude order — like ISO
6709:1983 [https://en.wikipedia.org/wiki/ISO_6709])

• Unlike GML, polygons are not expected to repeat the first point.

• For geometry, both single and multiple points, lines and polygons are supported.

• Inner rings are supported

• Polygon contours should be specified in a counter-clockwise manner.

• Topological errors should be avoided:

◦ Self-intersections

◦ Polygon overlaps

▪ Overlapping and non-overlapping areas should be split and attributed differently
instead

◦ Colinear edges not sharing all vertices

Sample polygon feature GeoECON

   PolygonFeatureCollection
   { [
      features = {
         id = 1,
         geometry = [
            {
               outer = { [ { 0, 0 }, { 0, 15 }, { 15, 15 }, { 15, 0 } ] },
               inner = [ { [ { 3, 3 }, { 12, 3 }, { 12, 12 }, { 3, 12 } ] } ]
            }
         ]
      },
      {
         id = 2,
         geometry = Polygon {
            { [ { 15, 15 }, { 30, 0 }, { 15, 0 } ], hidden = [ { 1, 2 } ] }
         }
      }
   ] }
}
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Figure 68. Sample visualization of the above ECON PolygonFeatureCollection

Sample line feature GeoECON

   LineFeatureCollection
   { [
      features = {
         id = 1,
         geometry = [
           { [ { 0, 0 }, { 15, 15 }, { 0, 15 } ] },
           { [ { 3, 3 }, { 12, 12 }, { 3, 12 } ] }
         ]
      },
      {
         id = 2,
         geometry = LineString { [ { 0, 0 }, { 7, 0 }, { 15, 15 } ] }
      }
   ] }
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Figure 69. Sample visualization of the above ECON LineFeatureCollection

Sample point feature GeoECON

   PointFeatureCollection
   { [
      features = {
         id = 1,
         geometry = [ { 0, 0 }, { 15, 15 }, { 0, 15 }, { 3, 3 }, { 12, 12 }, { 3, 12 }
]
      },
      {
         id = 2,
         geometry = GeoPoint { 7, 0 }
      }
   ] }

130



Figure 70. Sample visualization of the above ECON PointFeatureCollection

GeoECON Schema

   struct GeoPoint
   {
      Degrees lat, lon;

      // Conversion property so that a single GeoPoint is a valid list of GeoPoints
      property Container<GeoPoint>;
   }

   struct Polygon
   {
      PolygonContour outer;
      Container<PolygonContour> inner;

      // Conversion property so that a single Polygon is a valid list of Polygons
      property Container<Polygon>;
   };

   struct StartEndPair
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   {
      int start, end;
   };

   class PolygonContour
   {
   public:
      Container<GeoPoint> points;
      Container<StartEndPair> hidden;

      // Conversion property so that a single PolygonContour is a valid list of
PolygonContours
      property Container<PolygonContour>;
   };

   struct LineString
   {
      Container<GeoPoint> points;

      // Conversion property so that a single LineString is a valid list of
LineStrings
      property Container<LineString>;
   };

   struct VectorFeature { int64 id; };

   struct PolygonFeature : VectorFeature
   {
      Container<Polygon> geometry;
   };

   struct LineFeature : VectorFeature
   {
      Container<LineString> geometry;
   };

   struct PointFeature : VectorFeature
   {
      Container<GeoPoint> geometry;
   };

   class LineFeatureCollection
   {
   public:
      Container<LineFeature> features;
   }

   class PolygonFeatureCollection
   {
   public:
      Container<PolygonFeature> features;

132



   }

   class PointFeatureCollection
   {
   public:
      Container<PolygonFeature> features;
   }

10.C.3. ECON representation of attributes data and spatial indexing
information

ECON representation of attributes and spatial indexing can be described as follows:

• Line features store records extents and length.

• Polygon features store records extents and area.

• Points do not store extent as the extent would duplicate too much data (although large multi-
point features may benefit from that option)

• Attributes information is structured in a relational manner, with an array of attributes
combination occurrences and one string table per field, similar to how the SQLite database of
the GNOSIS data store are laid out.

Sample attribs.econ (for polygons)

   {
      fields = [
         { name = "name", type = text },
         { name = "stuff", type = integer },
         { name = "numbers", type = real }
      ],
      stringTables = [
         { 0, [ { "It works!", 2 }, { "TestData", 1 } ] }
      ],
      attributes = [
         { 1, [ { 1, 1234 }, { 2, 9876 } ] },
         { 2, [ { 1, 3.1415 }, { 2, 2.718 } ] }
      ],
      records = [
         { 1, { attrID = 1, area = 0.0877298168985721, extent = { {  0, 0 }, { 15, 15
} } } },
         { 2, { attrID = 2, area = 0.0685389194520094, extent = { { 15, 0 }, { 30, 15
} } } }
      ]
   }

ECON Schema for attribs.econ

   class AttributesData
   {
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   public:
      Container<RecordDataField> fields;
      Map<int, Map<String, int64>> stringTables;
      Map<int, Map<int64, FieldValue>> attributes;
      Map<int64, GeometryData> records;
   }

   struct GeoPoint
   {
      Degrees lat, lon;
   };

   struct GeoExtent
   {
      union
      {
         GeoPoint lowerLeft;
         GeoPoint ll;
      };
      union
      {
         GeoPoint upperRight;
         GeoPoint ur;
      };
   };

   struct GeometryData
   {
      int64 attrID;
      union
      {
         double area;
         double length;
      };
      GeoExtent extent;
   };

   enum FieldType
   {
      integer = 1,
      real    = 2,
      text    = 3,
      blob    = 4,
      nil     = 5
   };

   class RecordDataField
   {
   public:
      String name;
      FieldType type;
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   };

10.C.4. ECON representation of Compact Vector Tiles

This representation is mainly intended for debugging purposes and to illustrate the binary version
of the compact vector tiles

Sample points feature

   CompactPointFeatureCollection {
      points = [
         { -32767, -32767 },
         { -21844, -21844 },
         { -32767, -21844 },
         { -30582, -30582 },
         { -24028, -24028 },
         { -30582, -24028 },
         { -27669, -32767 }
      ],
      elements = [
         { id = 1, start = 0, count = 6 },
         { id = 2, start = 6, count = 1 }
      ]
   }

Sample lines feature

   CompactLineFeatureCollection {
      points = [
         { -32767, -32767 },
         { -21844, -21844 },
         { -32767, -21844 },
         { -30582, -30582 },
         { -24028, -24028 },
         { -30582, -24028 },
         { -27669, -32767 }
      ],
      flags = [ 0, 0, 0, 0, 0, 0, 0 ],
      indices = [
         0, 1, 2,
         3, 4, 5,
         0, 6, 1
      ],
      elements = [
         { id = 1, start = 0, count = 3 },
         { id = 1, start = 3, count = 3 },
         { id = 2, start = 6, count = 3 }
      ]
   }
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Sample polygons feature

   CompactPolygonFeatureCollection {
      points = [
         { -32767, -32767 },
         { -32767, -21844 },
         { -21844, -21844 },
         { -21844, -32767 },
         { -30582, -30582 },
         { -24028, -30582 },
         { -24028, -24028 },
         { -30582, -24028 },
         { -10922, -32767 } ]
      ],
      flags = [
         { { bottom = true, left = true }, { upIn = true, rightIn = true } },
         { { bottom = true }, { leftIn = true } },
         { },
         { { left = true }, { downIn = true } },
         { },
         { },
         { },
         { },
         { { left = true } }
      ],
      indices = [
         // For the square with a square hole in the center (id 1)
         0, 4, 1,
         0, 3, 4,
         4, 7, 1,
         3, 5, 4,
         7, 2, 1,
         3, 2, 5,
         7, 6, 2,
         2, 6, 5,
         // For the top triangle (id 2)
         2, 3, 8
      ],
      elements = [
         { id = 1, start =  0, count = 24 },
         { id = 2, start = 24, count =  3 }
      ]
   }

ECON Schema for Compact Vector Features

   class EdgeFlags : byte
   {
   public:
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      bool bottom:1, left:1, top:1, right:1;
   };

   class DirFlags : byte
   {
   public:
      bool downIn:1, leftIn:1, upIn:1, rightIn:1;
   };

   class PolygonVertexFlags : byte
   {
   public:
      EdgeFlags onEdge:4;
      DirFlags d:4;
   };

   struct ShortPoint
   {
      short lat, lon;
   };

   struct VectorPiece
   {
      int64 id;
      int start, count;
   };

   class CompactPolygonFeatureCollection
   {
   public:
      Container<VectorPiece> elements;
      Container<ShortPoint> points;
      Container<uint16> indices;
      Container<PolygonVertexFlags> flags;
   }

   class CompactLineFeatureCollection
   {
   public:
      Container<VectorPiece> elements;
      Container<ShortPoint> points;
      Container<uint16> indices;
      Container<byte> flags;
   }

   class CompactPointFeatureCollection
   {
   public:
      Container<VectorPiece> elements;
      Container<ShortPoint> pointsl;
   }
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Appendix D: GNOSIS data store to hold vector, raster
or gridded coverage with shared tiling structure
(CR 523 [http://ogc.standardstracker.org/show_request.cgi?id=523])

Each layer in the data store lives in its own directory and can contain a single data type (imagery,
coverage, vector polygons, vector lines or vector points).

10.D.1. Ideal for no bandwidth; comparison with GeoPackage

The GNOSIS data store layers provide a convenient way to distribute any type of geospatial data
offline for recurrent visualization or analysis, or in low-bandwidth situations. Folders can regroup
multiple layers and arbitrary number of hierarchy levels can effectively provide support multiple
vector, gridded coverage or raster feature types.

The approach can be further described as follows:

• Default cascading style sheets can be included to provide default styling options and chained for
different levels of customizations.

• Size and number and size of files is kept balanced.

• If a single file is desired, a folder data store can be zipped into a single archive.

• Because the bulk of the data requiring rapid access is the geometry, a simple format provides
faster access than if it had to go through the overhead of a database file.

NOTE The actual current implementation of this could be even further optimized.

• The data store still benefits from the advantages of spatial indexing and relational attribute
databases as it uses SQLite for those purposes.

• It would be interesting to investigate the possibility of partial integration with GeoPackage, as
some goals are shared.

10.D.2. Layer information file (LayerInfo)

An information file serialized to ECON describes the contents of the layer, with information such as
data type, title, geospatial extent.
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Sample layerInfo.econ

   {
      // Layer title
      title = "Countries",
      // Data Type
      dataType = { vector, areas },
      // Zoom level of source data
      sourceZoomLevel = 4,
      // Zoom level for which tiles are available:
      optimizedZoomLevel = 4,
    // Extents covered by this data set
      geoSpatialCoverage = [{ -90, -180 }, { 90, 180 }],
      // Temporal coverage if applicable
      temporalCoverage =
      {
         yearly = true, monthly = true, daily = true,
         start = { 2000, january, 1 },
         end = { 2017, may, 8 },
         /* If temporal grouping is done by directories containing the
            tile pyramids, temporalGroupingFirst will be set to true.
            Otherwise, temporal directories are within each tile pyramid */
         temporalGroupingFirst = false
      }
   }

ECON Schema for layerInfo.econ

   class LayerInfo
   {
   public:
      String title;
      LayerFeatureType dataType;
      int sourceZoomLevel;
      int optimizedZoomLevel;
      Container<GeoExtent> geoSpatialCoverage
      TemporalCoverage temporalCoverage
   };

   struct GeoPoint { Degrees lat, lon; };

   struct GeoExtent
   {
      union { GeoPoint lowerLeft;  GeoPoint ll; };
      union { GeoPoint upperRight; GeoPoint ur; };
   };

   enum VectorFeatureType { none, points, lines, areas; };
   enum RasterFormat { none, argb, bits8, bits16 };
   enum CoverageFormat { short16, float32, byte8, integer32, double64 };
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   enum FeatureType { none, coverage, raster, vector };

   class LayerFeatureType : uint
   {
   public:
      FeatureType type:2:16;
      VectorFeatureType vectorFeatureType:4:0;  // For vector
      RasterFormat rasterFormat:3:0;            // For raster
      CoverageFormat coverageFormat:2:4;        // For coverage
   };

   class TemporalOptions : uint
   {
   public:
      bool year:1, month:1, day:1, week:1, hour:1;
      TemporalOptions date:3:0;
      bool temporalOutside:1:3;
   };

   enum Month
   {
      january, february, march, april, may, june, july, august, september, october,
november, december
   };

   struct DateTime
   {
      int year;
      Month month;
      int day, hour, minute, second;
   };

   struct TemporalCoverage
   {
      bool yearly, monthly, daily;
      bool temporalGroupingFirst;
      DateTime start, end;
      TemporalOptions options;
   };

10.D.3. Storing all geometry as unprojected WGS84 / EPSG:4326

The service or client can perform re-projection to a coordinate reference system as needed. The
versatility of WGS84 (typically requiring a simple forward-transform to any other coordinate
reference system) makes it much more practical than storing data in a more specific CRS, or
duplicating it in multiple CRS. The potential issues with WGS84 are mitigated by the varying
longitudinal data density of the GNOSIS global tiling scheme.
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10.D.4. Relational attributes and string tables databases

The attributes corresponding to the feature IDs of all tiles for a given layer are stored in a SQLite
database, named attributes.sqlite. String values are stored in string tables, one such string table per
attribute column with a text type. An alternative format used e.g. with OpenStreetMap data
supports key:value tags rather than fixed field columns. The SQL (SQLite) schema for the attributes
data store is as follows:

Attributes

   CREATE TABLE Attributes (
      __GNOSIS_ID INTEGER PRIMARY KEY, -- Primary key for a specific set of values
      __GNOSIS_FID INTEGER,           -- An implementation specific identifier
      __GNOSIS_HASH INTEGER,              -- Hash value of attribute data for rapid
matching

      -- Attributes data follow, example fields from Natural Earth Cultural/Countries:
      `scalerank` INTEGER,
      `name` INTEGER REFERENCES `STRINGS_name`,
      `name_long` INTEGER REFERENCES `STRINGS_name_long`)

• String tables

◦ Each attribute field describing text has a matching string table to save storage space and
speed up look-ups. As an example, the string table for the name attribute in the example
above would be:

   CREATE TABLE `STRINGS_name` (ID INTEGER PRIMARY KEY, s TEXT UNIQUE)

• Tags-based attributes

◦ For tags based attributes, all values are treated as text. One string table defines the keys,
while another defines values. Entries in the Tags table references both the keys and values
table:

   CREATE TABLE STRINGS_Keys (ID INTEGER PRIMARY KEY, k TEXT UNIQUE)
   CREATE TABLE STRINGS_Values (ID INTEGER PRIMARY KEY, v TEXT UNIQUE)
   CREATE TABLE Tags (
      ID INTEGER REFERENCES Attributes,
      Key INTEGER REFERENCES STRINGS_Keys,
      Value INTEGER REFERENCES STRINGS_Values)

• For tags-based attributes, the Attributes table does not have any additional fields. Each entry in
the Attributes table represent a specific occurrence of a given combination of keys and values
occurring for a primitive. As usual, the spatially-indexed primitive table described on next page
references the Attributes table entry.
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10.D.5. R-trees for spatial indexing; feature dimensions across tiles

• Each geometry type will in turn have a spatially-indexed table referencing the Attributes table:

R-tree spatial index

   CREATE VIRTUAL TABLE GeometryRTree USING rtree_i32 (id, minLat, maxLat, minLon,
maxLon)

Points geometry table

   CREATE TABLE Points (
      ID INTEGER PRIMARY KEY,                     -- The primitive ID referenced from
the geometry
      AttributesID INTEGER REFERENCES Attributes, -- Reference into the Attributes
table
      lat INTEGER, lon INTEGER)                   -- Position (latitude, longitude) in
decimal degrees ×1E7

   -- Populating spatial index
   INSERT INTO GeometryRTree(id, minLat, maxLat, minLon, maxLon)
      SELECT ID, MIN(lat), MAX(lat), MIN(lon), MAX(lon) FROM Points;

NOTE

• Multi-points might benefit from minimum and maximum latitude, longitude in
the Points table

• Because points are only described by a single coordinate and cannot be
generalized a lower zoom level, defining their geometry in the tile pyramids is
redundant and might eventually be omitted in the data store.

Lines geometry table

   CREATE TABLE Lines (
      ID INTEGER PRIMARY KEY,                     -- The primitive ID referenced from
the geometry
      AttributesID INTEGER REFERENCES Attributes, -- Reference into the Attributes
table
      Length REAL,                                -- Combined length in meters for the
entire primitive
      minLat INTEGER, minLon INTEGER,             -- Minimum latitude,longitude in
decimal degrees ×1E7
      maxLat INTEGER, maxLon INTEGER)             -- Maximum latitude,longitude in
decimal degrees ×1E7

   -- Populating spatial index
   INSERT INTO GeometryRTree(id, minLat, maxLat, minLon, maxLon)
      SELECT ID, MIN(minLat), MAX(maxLat), MIN(minLon), MAX(maxLon) FROM Lines;
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Areas geometry table

   CREATE TABLE Areas (
      ID INTEGER PRIMARY KEY,                     -- The primitive ID referenced from
the geometry
      AttributesID INTEGER REFERENCES Attributes, -- Reference into the Attributes
table
      Area REAL,                                  -- Combined area in square meters
for the entire primitive
      minLat INTEGER, minLon INTEGER,             -- Minimum latitude,longitude in
decimal degrees ×1E7
      maxLat INTEGER, maxLon INTEGER)             -- Maximum latitude,longitude in
decimal degrees ×1E7

   -- Populating spatial index
   INSERT INTO GeometryRTree(id, minLat, maxLat, minLon, maxLon)
      SELECT ID, MIN(minLat), MAX(maxLat), MIN(minLon), MAX(maxLon) FROM Areas;

NOTE
• Currently lengths in meters are not properly computed in meters, meters² but

are rather in radians, radians² (a messy mix of latitude radians & longitude
radians)

10.D.6. Multi-level tile pyramids to balance file count vs. file size

Vector, imagery or raster data is stored per tiles, organized by tile pyramids for a range of levels so
as to minimize the number of files. For example, a layer going all the way to level 9 might have
levels 4-9 regrouped in tile pyramids files named after the level 4 tiles (encompassing all sub-tiles
all the way to level 9 within the geospatial extent of the level 4 tile), while level 0-3 are regrouped in
tile pyramids named after the level 0 tiles. Regrouping more of the higher levels (e.g. 6 levels, 4-9)
rather than the lower levels (4 levels only, 0-3) better reduces the number of tiles, as the most
detailed levels will always have the most numerous tiles.

The tile pyramids archive file name is determined from the top level tile encompassing all tiles
from higher level within it. These tile pyramids are in the form of an Ecere Archive. The name of
the tile pyramid file is currently determined by:

[Source Total Zoom Levels][Pyramid Levels][Current Level][Latitude]G[Longitude].gmt

where:

• Source Total Zoom Levels, Pyramid Levels and Current Level are represented as uppercase
letters, starting with A representing 0 (numbers starting at 0 would represent levels beyond 26
if ever needed).

• Latitude and Longitude are represented as uppercase hexadecimal indices into the GNOSIS
tiling scheme starting from lower-left corner (90°S, 180°W)
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Sample file name computation for the tile pyramid

   sprintf(name, "%s/%c%c%c%XG%X.%s", path, sourceLevel + 'A', pyramidLevels + 'A',
level + 'A', lat, lon, "gmt");

For temporal features, this file could be within a temporal directory if the layer has the
temporalOutside option set.

The file path identifying a single tile within the archive is determined based on the tile key, made
up of a zoom level, latitude index and longitude index, as well as an optional temporal identifier for
temporal data sets.

The name of the file within the archive is currently determined by:

[Tile Zoom Level]/[Latitude]G[Longitude]

Sample file name computation for the file name

   sprintf(name, "%c/%XG%X", level + 'A', lat, lon);

where:

• Zoom Level is represented as uppercase letters, starting with A representing level 0 (numbers
starting at 0 would represent levels beyond 26 if ever needed)

• Latitude and Longitude are represented as uppercase hexadecimal indices into the GNOSIS
tiling scheme starting from lower-left corner (90°S, 180°W)

Tile pyramids regrouping would not apply to non-quad tree tiling schemes, where tiles would have
to be in individual files or be regrouped otherwise.

10.D.7. Minimizing overhead for full (completely inside polygon) or empty
tiles

Features such as water and land polygons would have a lot of detail around coastlines, but consist
mostly of a large number of completely filled tiles within the polygons. OpenStreetMapData has
good examples (water [http://openstreetmapdata.com/data/water-polygons] and land
[http://openstreetmapdata.com/data/land-polygons] polygons)

A special way to represent this in the data store is planned to be implemented as future work: *
Uising a special representation for a full tile that takes up less space. * Avoiding to define tiles at
higher resolution levels when a lower resolution level has been marked as a full tile. * Potentially, a
similar strategy could be useful for empty tiles as well.

10.D.8. Ecere ARchive (eAR) format to regroup tile pyramids

The Ecere archive format is a simple format supporting a directory hierarchy and zlib compression
on individual "files" within the archive. It is used by the GNOSIS data store to regroup tile
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pyramids.Support for alternative compression algorithms/libraries is planned, and may result in
better compression ratio. The tool ear can operate on eAR archives and its source code is available
here [https://github.com/ecere/ecere-sdk/tree/master/ear/cmd]. Another of its key uses is to embed files
within eC executables.

The tool is installed together with the ecere-dev package in Debian/Ubuntu or from the Ecere SDK
installer [http://ecere.org/install]. The manual page for ear can be found here [http://manpages.ubuntu.com/

manpages/trusty/man1/ear.1.html]. The implementation of the eAR archive functionality is found in the
libecere source code [https://github.com/ecere/ecere-sdk/blob/master/ecere/src/sys/EARArchive.ec]

10.D.9. Possibility to hold time series for moving features

Different temporal modes are supported, with separate directories either inside the tile pyramid
archives or within them. Tiles can be further identified by the time dimension, with various
granularity e.g. yearly, monthly, daily, weekly, hourly. This is ideal for moving lines, polygon and
possibly multipoint features as well. For moving single points features, it might be more
advantageous to rely instead on temporal attributes and filtering. The same time dimension
indexing is also used for coverage features (e.g. sea ice concentration).

10.D.10. Raster and gridded coverage representation

The data is prefixed by a 24 byte GNOSIS Map Tile Header (Described in annex B)

NOTE
• When encoded using an image compression format such as PNG or JPEG-2000

already defining a way to encode the image, from what is described below only
the geospatial mapping and geometry of the image applies.

Binary layout of Imagery tiles

Offset Type Size Name Description

0 uint16 2 width Width of the data
(typically 256)

2 uint16 2 height Height of the data
(typically 256)
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Offset Type Size Name Description

4 (based on format)
(width*height)

width * height *
sizeof(type)
(typically 65,536)

data • The first pixel
has its upper-
left corner at
the upper-left
(north-west)
corner of the
tile, and the
next pixels fill
a scanline to
the East.

• The next
scanline is
south of the
first one, and
so on.

• Each pixel
represents a
color for the
entire pixel
sampled from
the center or
average, with
the 256 x 256
squares to be
entirely within
the tiles

Raster formats:

• (0x30) argb: Alpha, Red, Green, Blue (the alpha in high order bit). 4 bytes per pixel (262,144
total).

• (0x31) bits16: signed, 16-bit integer (2 bytes) per pixel (131,072 total)

• (0x32) byte8: unsigned, 1 byte per pixel (65,536 total)

Binary layout of gridded coverage tiles

Offset Type Size Name Description

0 uint16 2 width Width of the data
(typically 259)

2 uint16 2 height Height of the data
(typically 259)
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Offset Type Size Name Description

4 (based on format)
(width*height)

width * height *
sizeof(type)
(typically 67,081)

data • The first value
reflects a
sample 1/256th
of the tile’s
latitude
difference
(height) and
longitude
difference
(width) away
towards the
north-west
direction from
the upper-left
(north-west)
corner. The
next values fill
a scanline to
the East, going
1/256th past
the tile to the
East, for a total
of 259 samples
across.

• The next
scanline is
south of the
first one, and
so on for a
total of 259
scanlines, with
the last
scanline
1/256th of the
tile’s latitude
difference
south of the
bottom (south)
edge.

• The value are
expected to be
sampled at
exact location
(e.g. at the
corners of the
imagery
'pixels'). The
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values in
different cells
for the same
geospatial
location (e.g.
on the tile
boundary, as
well as for the
1 value buffer
around each
tile) should
match exactly,
and facilitate
dealing with
partial data
during
visualization
or analysis
(e.g. to
dynamically
create a 3D
terrain mesh
from elevation
grids).

Coverage formats:

• (0x50) byte8: unsigned, 1 byte per pixel (67,081 total)

• (0x51) short16: signed, 2 bytes per pixel (134,162 total)

• (0x52) integer32: signed, 4 bytes per pixel (268,324 total)

• (0x53) float32: floating-point, 4 bytes per pixel (536,648 total)

• (0x54) double64: floating-point, 8 bytes per pixel (1,073,296 total)

• (0x70) quantized signed 16-bit: 2 double64, plus 2 bytes per pixel (134,178 total)
If tile is not empty, min and max values are written as 64 bit double precision floating-points.
Then the encoded representation of the grid follows quantized to the min-max range — 0
represents (min+max)/2.

3D Data formats:

• (0x90) Points Cloud

• (0xA0) 3D Models

Appendix E: GNOSIS Tiles API provided to other Vector
Tiles work package participants

10.E.1. Overview: A tiny subset of the GNOSIS SDK API

The API can be described as follows:

• Provided as an interface into the GNOSIS tiled data store to populate it with tiled data, and to
facilitate implementing support in clients or services for the GNOSIS tiling scheme and new
formats being introduced (GNOSIS Compact Vector Tiles, GeoECON).

• Support for eC [http://ec-lang.org], C, Python (C++, C#, Java and other languages to come)

• Bindings powered by Ecere’s open-source multi-language bindings generator (bgen — source
code [https://github.com/ecere/ecere-sdk/tree/bgen-bindings/bgen])

10.E.2. Layer Information File Access

The layer information can be accessed directly from the GNOSISLayerStore class:
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   input = GNOSISLayerStore.open(inputGNOSISStore, LayerOpenMode.read)
   if input is not None:
      extents = input.geoSpatialCoverage
      print("Extents: ", extents)
      print("Source Level: ", input.sourceLevel)
      print("(1:", input.sourceScaleDenominator, ", ", input.sourceMetersPerPixel, " m
/ pixel)")
      print("Temporal coverage: ", input.temporalMode, " ( ", input.startTime, " - ",
input.endTime, " )")
      intput.delete()

   out = GNOSISLayerStore.open(folderName, LayerOpenMode.write)
   if out is not None:
      out.geoSpatialCoverage = [ ((0,-90), (90,90)) ]
      out.sourceLevel = 0
      out.delete()

• The LayerInfo class also provides an interface to retrieve and save this layer information in a
stand-alone manner:

   f = fileOpen(path + "/layerInfo.econ", FileOpenMode.write)
   if f is not None:
      info = LayerInfo (input.title,
                        ( FeatureType.vector, input.vectorType ),
                        input.sourceLevel,
                        input.sourceLevel,
                        extents )
      writeECONObject(f, LayerInfo, info, 0);
      f.delete()

   f = fileOpen(path + "/layerInfo.econ", FileOpenMode.read)
   if f is not None:
      ep = ECONParser(f = f)
      r, info = ep.getObject(LayerInfo)
      f.delete()

10.E.3. Matching zoom level with representative fraction scale & pixel
density

Given a scale denominator or pixel/m density, a zoom level can be returned, and vice-versa.
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   print(levelFromMetersPerPixel(250))
   print(metersPerPixelFromLevel(8))

   print(levelFromScaleDenominator(10000000))
   print(scaleDenominatorFromLevel(4))

NOTE The functions returning level round up to the higher resolution level.

10.E.4. Matching tile key (ID) and extents (TileKey, GeoExtent)

A tile key consists of an integer level, latitude index and longitude index. A geospatial position is
specified as latitude and longitude in double precision floating-point radians. A geospatial extent is
specified as a lower-left and upper-right geospatial position

   t1Extent = GeoExtent ((0,0), (90,90))

• Given a tile key, a geospatial extent will be returned

   TileKey(0, 1, 2).extent

• Given a geospatial point within a tile and a zoom level, a corresponding tile key can be returned

   t1Key = TileKey.fromMidPoint( ((t1Extent.ll.lat+t1Extent.ur.lat)/2, (t1Extent.ll
.lon+t1Extent.ur.lon)/2), 0 )

• Given a geospatial extent and a zoom level, a list of tile keys can be returned

   tiles = extent.listTiles(level)

10.E.5. Vector Feature Collection Classes

The syntax for defining geometry using the Vector Feature Collection classes in eC [http://ec-lang.org]
is identical to the GeoECON syntax. The Python syntax has minor tweaks to match its own object
notation. This syntax is also similar to Point/MultiPoint, LineString/MultiLineString and
Polygon/MultiPolygon in GML and GeoJSON. Polygons support inner and outer rings. A single
vector type is allowed per layer. An attribute ID for each entity references attributes data.
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Sample Python PolygonFeatureCollection usage

   data = PolygonFeatureCollection ( [
      (
         1,
         [ Polygon (
              PolygonContour ( [ (0,0), (0, 15), (15, 15), (15, 0) ] ),
              [ PolygonContour ( [ (3,3), (3, 12), (12, 12), (12, 3) ] ) ]
         ) ]
      ),
      (
         2,
         Polygon (
           PolygonContour ( [ (15,0), (30, 0), (15, 15) ], [ (0,1) ] )
         )
      )
   ] )

Sample Python LineFeatureCollection usage

   data = LineFeatureCollection ( [
      (
         1,
         [
           LineString ( [ (0,0), (15, 15), (0, 15) ] ),
           LineString ( [ (3,3), (12, 12), (3, 12) ] )
         ]
      ),
      (
         2,
         LineString ( [ (0,0), (7, 0), (15, 15) ] )
      )
   ] )

Sample Python PointFeatureCollection usage_

   data = PointFeatureCollection ( [
      (
         1,
         [ (0,0), (15, 15), (0, 15), (3,3), (12, 12), (3, 12) ]
      ),
      (
         2,
         (7, 0)
      )
   ] )

• The CompactPointFeatureCollection, CompactLineFeatureCollection and
CompactPolygonFeatureCollection classes represent the GNOSIS Compact Vector Tiles
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• Conversion from the compact features to the regular VectorFeatureCollection classes is done by
invoking the VectorFeatureCollection::decompact() method, which requires the tile extent as a
parameter (because vertex data is localized).

   f = fileOpen("0/1_2.gbin", FileOpenMode.read)
   if f is not None:
      c = f.get(CompactVectorFeatureCollection)
      # Decompact to traditional (non-compact) feature collection
      e = c.decompact(TileKey(0, 1, 2).extent)
      # Write in ECON representation of traditional feature collection
      writeGeoECON(e, "1_2-test.econ")
      f.delete()

10.E.6. Adding vector tiles to data store (GNOSISMapLayer)

Feature Collection Classes can be added to the data store through the GNOSISMapLayer class.

Sample GNOSISMapLayer usage

   def testStoreData(folderName, data):
      out = GNOSISLayerStore.open(folderName, LayerOpenMode.write)
      if out is not None:
         out.addTile(t1Key, None, data)
         out.delete()

10.E.7. Storing attributes to data store (RecordAttributes)

Attributes are added separately from geometry by specifying their ID

Sample Python RecordAttributes usage

   out = GNOSISLayerStore.open(folderName, LayerOpenMode.write)
   if out is not None:
      out.fields = [ ("name", FieldType.text), ("stuff", FieldType.integer), ("
numbers", FieldType.real) ]

      r1 = RecordAttributes(out)
      r1.setAttributeByName("name", "TestData");
      r1.setAttributeByName("stuff", 1234);
      r1.setAttributeByName("numbers", 3.1415);
      out.setRecordAttributes(1, r1)

      r2 = RecordAttributes(out)
      r2.setAttributeByName("name", "It works!")
      r2.setAttributeByName("stuff", 9876)
      r2.setAttributeByName("numbers", 2.718)
      out.setRecordAttributes(2, r2)
      out.delete()
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10.E.8. Retrieving geometry from data store

   tiles = extent.listTiles(level)
   for t in tiles:
      data = input.getTile(t.key)

10.E.9. Retrieving attributes from data store

   input = GNOSISLayerStore.open(inputGNOSISStore, LayerOpenMode.read)
   if input is not None:
      data = input.attributesData
      if data is not None:
         f = fileOpen(fileName, FileOpenMode.write)
         if f is not None:
            writeECONObject(f, AttributesData, data, 0)
            f.delete()

10.E.10. Retrieving spatial indexing information from data store

   input = GNOSISLayerStore.open(inputGNOSISStore, LayerOpenMode.read)
   if input is not None:
      attribs = input.attributesData
      extent = attribs.records[id].extent
      length = attribs.records[id].length

10.E.11. Storing and retrieving data through GML (with automatic
attributes)

   out = GNOSISLayerStore.open(outputGNOSISStore, LayerOpenMode.write)
   if out is not None:
      tiles = extent.listTiles(level)
      for t in tiles:
         data = input.getTile(t.key)
         if data is not None:
            fileName = destGMLStore + "/" + str(level) + "/" + str(t.key.lat) + "_" +
str(t.key.lon) + ".gml"
            input.writeTileDataToGML(data, t.extent, fileName)
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   input = GNOSISLayerStore.open(inputGNOSISStore, LayerOpenMode.read)
   if input is not None:
      tiles = extent.listTiles(level)
      for t in tiles:
         fileName = inputGMLStore + "/" + str(level) + "/" + str(t.key.lat) + "_" +
str(t.key.lon) + ".gml"
         data = out.loadTileDataFromGML(fileName)
         if data is not None:
            out.addTile(t.key, None, data)
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Appendix F: Revision History
Table 10. Revision History

Date Release Editor Primary
clauses
modified

Descriptions

June 15, 2017 0.1 S. Cavazzi all initial version

September 30,
2017

1.0 S. Cavazzi all Draft ER
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